Analytische Zahlentheorie

Skriptum

Manfred Madritsch

Institut Élie Cartan
Université de Lorraine

Version : 28. Februar 2022
Senden Sie Verbesserungsvorschläge und Korrekturen per E-Mail an manfred.madritsch@univ-lorraine.fr.
Inhaltsverzeichnis

1 Einleitung und klassische Methoden .. 7

1 Der Fundamentalsatz der Arithmetik .. 9
 1.1 Teilbarkeit .. 9
 1.2 Der größte gemeinsame Teiler .. 9
 1.3 Primzahlen ... 11
 1.4 Der Fundamentalsatz der Arithmetik ... 11
 1.5 Der Euklidische Algorithmus .. 12

2 Arithmetische Funktionen und Dirichlet Reihen 15
 2.1 Definitionen .. 15
 2.2 Beispiele .. 15
 2.3 Formale Dirichlet-Reihen .. 17
 2.4 Der Ring der arithmetischen Funktionen 17
 2.5 Die Möbius’sche Inversionsformel ... 20
 2.6 Die eulersche φ-Funktion .. 21
 2.7 Ableitungen arithmetischer Funktionen 22

3 Mittelwerte arithmetischer Funktionen .. 23
 3.1 Riemann-Stieltjes-Integral ... 23
 3.2 Abelsche Summation .. 23
 3.3 Euler-Maclaurin-Formel ... 25
 3.4 Das Problem von Dirichlet und die Hyperbelmethode 27
 3.5 Quadratfreie Zahlen ... 29

4 Einige elementare Sätze über die Verteilung der Primzahlen 33
 4.1 Die Tschebyschow Ungleichungen ... 34
 4.2 Erster Satz von Mertens .. 36
 4.3 Zwei asymptotische Formeln .. 38
 4.4 Mertens Formel ... 39
 4.5 Ein weiterer Satz von Tschebyschow ... 41
 4.6 Die Funktionen ω and Ω .. 41
 4.7 Die von Mangoldt Funktion .. 42
 4.8 Mittelwert der Möbiusfunktion und die Summatorische Funktion von Tschebyschow ... 43
INHALTSVERZEICHNIS

<table>
<thead>
<tr>
<th>II</th>
<th>Methoden der komplexen Analysis</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Die Gamma Funktion</td>
<td>51</td>
</tr>
<tr>
<td>5.1</td>
<td>Definitionen</td>
<td>51</td>
</tr>
<tr>
<td>5.2</td>
<td>Die Produktformel von Weierstraß</td>
<td>53</td>
</tr>
<tr>
<td>5.3</td>
<td>Beta-Funktion</td>
<td>54</td>
</tr>
<tr>
<td>5.4</td>
<td>Die Stirling-Formel im Komplexen</td>
<td>55</td>
</tr>
<tr>
<td>5.5</td>
<td>Hankel-Formel</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>Erzeugende Funktionen: Dirichlet Reihen</td>
<td>59</td>
</tr>
<tr>
<td>6.1</td>
<td>Konvergente Dirichlet Reihen</td>
<td>59</td>
</tr>
<tr>
<td>6.2</td>
<td>Dirichlet-Reihen multiplikativer Funktionen</td>
<td>60</td>
</tr>
<tr>
<td>6.3</td>
<td>Fundamentale analytische Eigenschaften von Dirichlet-Reihen</td>
<td>60</td>
</tr>
<tr>
<td>6.4</td>
<td>Konvergenz-Abszisse und Mittelwert</td>
<td>65</td>
</tr>
<tr>
<td>7</td>
<td>Die Riemannsche Zeta-Funktion I</td>
<td>69</td>
</tr>
<tr>
<td>7.1</td>
<td>Analytische Fortsetzung</td>
<td>69</td>
</tr>
<tr>
<td>7.2</td>
<td>Approximation im kritischen Streifen</td>
<td>71</td>
</tr>
<tr>
<td>7.3</td>
<td>Erste Lokalisierung der Nullstellen</td>
<td>73</td>
</tr>
<tr>
<td>8</td>
<td>Der Primzahlsatz I</td>
<td>75</td>
</tr>
<tr>
<td>8.1</td>
<td>Dualität Abelsche/Taubersche Sätze</td>
<td>75</td>
</tr>
<tr>
<td>8.2</td>
<td>Der Satz von Tauber</td>
<td>77</td>
</tr>
<tr>
<td>8.3</td>
<td>Der Taubersche Satz von Newman</td>
<td>79</td>
</tr>
<tr>
<td>8.4</td>
<td>Der Primzahlsatz</td>
<td>81</td>
</tr>
<tr>
<td>9</td>
<td>Die Riemannsche Zeta-Funktion II</td>
<td>83</td>
</tr>
<tr>
<td>9.1</td>
<td>Funktionalgleichung</td>
<td>83</td>
</tr>
<tr>
<td>9.2</td>
<td>Die Produktentwicklung von Hadamard</td>
<td>89</td>
</tr>
<tr>
<td>9.3</td>
<td>Die Produktformeln für ξ und ζ</td>
<td>92</td>
</tr>
<tr>
<td>9.4</td>
<td>Nullstellenfreies Gebiet</td>
<td>95</td>
</tr>
<tr>
<td>9.5</td>
<td>Schranken für ζ'/ζ, $1/\zeta$ und $\log\zeta$</td>
<td>97</td>
</tr>
<tr>
<td>9.6</td>
<td>Die Riemannsche Vermutung</td>
<td>99</td>
</tr>
<tr>
<td>10</td>
<td>Der Primzahlsatz II</td>
<td>101</td>
</tr>
<tr>
<td>10.1</td>
<td>Perronsche Formel</td>
<td>101</td>
</tr>
<tr>
<td>10.2</td>
<td>Primzahlsatz mit Restglied</td>
<td>104</td>
</tr>
<tr>
<td>10.3</td>
<td>Primzahlsatz unter Annahme der Riemannschen Vermutung</td>
<td>108</td>
</tr>
<tr>
<td>11</td>
<td>Charaktere, L-Reihen und Primzahlen in Progressionen</td>
<td>111</td>
</tr>
<tr>
<td>11.1</td>
<td>Definitionen</td>
<td>111</td>
</tr>
<tr>
<td>11.2</td>
<td>Orthogonalitätsrelationen</td>
<td>114</td>
</tr>
<tr>
<td>11.3</td>
<td>Primzahlen in Progressionen</td>
<td>116</td>
</tr>
<tr>
<td>11.4</td>
<td>Verallgemeinete oder Große Riemannsche Vermutung (GRV)</td>
<td>120</td>
</tr>
<tr>
<td>12</td>
<td>Der Satz von Siegel-Walfisz</td>
<td>121</td>
</tr>
</tbody>
</table>
INHALTSVERZEICHNIS

III Siebmethoden 131

13 Einleitung 133
 13.1 Das Sieb von Eratosthenes 133
 13.2 Das kombinatorische Sieb von Brun 134
 13.3 Anwendungen 136

14 Das Selberg Sieb 139
 14.1 Nochmals Tschebischow 139
 14.2 Das Selberg Sieb 143

15 Das große Sieb 149
 15.1 Die analytische Form des großen Siebes 149
 15.2 Die arithmetische Form des großen Siebes 155
 15.3 Anwendungen 157

16 Mittelwertsätze 161
 16.1 Die Ungleichung von Pólya-Vinogradov 161
 16.2 Gauss Summen 161
 16.3 Gewichtete Summen mit Dirichlet Charakteren 161
 16.4 Der Satz von Barban-Davenport-Halberstam 165
 16.5 Der Satz von Bombieri-Vinogradov 165
Notation und andere Konventionen

Wir bezeichnen mit \(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R} \) und \(\mathbb{C} \) die Mengen der natürlichen Zahlen, der ganzen Zahlen, der rationalen Zahlen, der reellen Zahlen und der komplexen Zahlen. Wenn nicht anders angegeben sind alle Zahlen, ganze Zahlen. In diesem Skriptum bezeichnet \(p, p', p_i, q, q' \) und \(q_i \) immer eine Primzahl. Wir bezeichnen mit \((a, b) \) den größten gemeinsamen Teiler von \(a \) und \(b \). Außerdem ist \(d_n \) das kleinste gemeinsame Vielfache von \(\{1, 2, 3, \ldots, n\} \).
Teil I

Einleitung und klassische Methoden
Kapitel 1

Der Fundamentalsatz der Arithmetik

1.1 Teilbarkeit

Die fundamentale Eigenschaft der Primzahlen ist durch Teilbarkeit beschrieben. Daher wollen wir uns zunächst mit diesem Begriff ein wenig beschäftigen.

Definition 1.1. Wir sagen, dass eine d eine ganze Zahl n teilt, geschrieben $d \mid n$, wenn es eine ganze Zahl c gibt, sodass $n = cd$. Wir sagen auch, dass n ein Vielfaches von d ist, dass d ein Teiler von n ist.

Teilbarkeit ist eine Eigenschaft zweier ganzer Zahlen, die den folgenden Gesetzmäßigkeiten genügt.

Satz 1.1. Die Teilbarkeit hat folgende Eigenschaften:
1. $n \mid n$ (Reflexibilität)
2. $d \mid n$ und $n \mid m$ impliziert $d \mid m$ (Transitivität)
3. $d \mid n$ und $d \mid m$ impliziert $d \mid (an + bm)$ (Linearität)
4. $d \mid n$ impliziert $ad \mid an$ (Multiplikation)
5. $ad \mid an$ und $a \neq 0$ impliziert $d \nmid n$
6. $1 \mid n$
7. $n \mid 0$
8. $0 \mid n$ impliziert $n = 0$
9. $d \mid n$ und $n \neq 0$ impliziert $|d| \leq |n|$
10. $d \mid n$ und $n \mid d$ impliziert $|d| = |d|$
11. $d \mid n$ und $d \neq 0$ impliziert $(n/d) \mid n$.

1.2 Der größte gemeinsame Teiler

Wenn d zwei ganze Zahlen a und b teilt, dann nennen wir d einen gemeinsamen Teiler von a und b. Daher ist 1 ein gemeinsamer Teiler von jedem beliebigen Paar a und b. Wir wollen nun zeigen, dass a und b immer einen gemeinsamen Teiler haben, den man als Linearkombination von a und b darstellen kann.
Satz 1.2. Seien a und b zwei ganze Zahlen. Es gibt einen gemeinsamen Teiler d von a und b der Form

$$d = ax + by,$$

wobei x und y ganze Zahlen sind. Außerdem teilt jeder gemeinsame Teiler von a und b auch d.

Beweis. Zuerst nehmen wir an, dass $a \geq 0$ und $b \geq 0$. Wir verwenden Induktion nach n, wobei $n = a + b$. Wenn $n = 0$, dann ist $a = b = 0$ und wir können $d = 0$ mit $x = y = 0$ setzen. Nehmen wir nun an, dass der Satz wahr ist für $0, 1, 2, \ldots, n - 1$. Bei Symmetrie, können wir annehmen, dass $a \geq b$. Wenn $b = 0$ ist, dann setzen wir $d = a$, $x = 1$ und $y = 0$. Falls $b \geq 1$ ist, dann verwenden wir den Satz mit $a - b$ und b. Nachdem $(a - b) + b = a = n - b \leq n - 1$, können wir die Induktionsvoraussetzung anwenden und erhalten, dass es einen gemeinsamen Teiler d von $a - b$ und b der Form $d = (a - b)x + by$ gibt. Dieses d teilt auch $(a - b) + b = a$ und somit ist d ein gemeinsamer Teiler von a und b. Zum Abschluss müssen wir zeigen, dass jeder gemeinsame Teiler von a und b ein Teiler von d ist. Aber ein gemeinsamer Teiler von a und b teilt auch $a - b$ und b und somit auch d.

Für $a < 0$ oder $b < 0$ (oder beide), wenden wir den Satz auf $|a|$ und $|b|$ an. Dann gibt es einen gemeinsamen Teiler d von $|a|$ und $|b|$ der Form

$$d = |a|x + |b|y.$$

Wenn $a < 0$, dann $|a|x = -ax = a(-x)$. Gleicherweise wenn $b < 0$, dann $|b|y = b(-y)$. Daher ist d immer eine Linearkombination von a und b. \hfill \Box

Satz 1.3. Seien a und b zwei ganze Zahlen. Dann gibt es genau eine ganze Zahl d mit den folgenden Eigenschaften:

1. $d \geq 0$
2. $d \mid a$ und $d \mid b$
3. $e \mid a$ und $e \mid b$ impliziert $e \mid d$.

Beweis. Nach Satz 1.2 gibt es zumindest ein d, dass die Bedingungen 2. und 3. erfüllt. Daher erfüllt auch $-d$ diese Bedingungen. Aber wenn d' Bedingung 2 und 3 erfüllt, dann gilt $d \mid d'$ und $d' \mid d$, also $|d| = |d'|$. Daher gibt es genau ein $d \geq 0$ das Bedingung 2 und 3 erfüllt. \hfill \Box

Definition 1.2. Die Zahl d aus Satz 1.3 wird größter gemeinsamer Teiler (ggT) von a und b genannt. Wir schreiben oft einfach (a, b) oder aDb. Wenn $(a, b) = 1$ gilt, dann nennen wir a und b teilerfremd.

Wir wollen nun ein paar Eigenschaften des größten gemeinsamen Teilers auflisten.

Satz 1.4. Der ggT hat folgende Eigenschaften:

1. $(a, b) = (b, a)$
2. $(a, (b, c)) = ((a, b), c)$
3. $(ac, bc) = |c| (a, b)$
4. $(a, 1) = (1, a) = 1$

Beweis. Wir zeigen lediglich 3., der Rest ist Übung.

Seien $d = (a, b)$ und $e = (ac, bc)$. Wir müssen also zeigen, dass $e = |c|d$ gilt. Nachdem d der ggT ist, gibt es eine Linearkombination der Form $d = ax + by$. Dann gilt

$$cd = acx + bcy.$$
Nachdem \(e \mid ac \) und \(e \mid bc \), folgt \(e \mid cd \). Andererseits teilt \(cd \) sowohl \(ac \) als auch \(bc \), daher gilt \(cd \mid e \). Damit ist \(|e| = |cd| \) und folglich \(e = |c|d \).

Satz 1.5 (Lemma von Euclid). Wenn \(a \mid bc \) und \((a,b) = 1 \) gilt, dann gilt \(a \mid c \).

Beweis. Nachdem \((a,b) = 1 \) können wir \(1 = ax + by \) schreiben. Daher ist \(c = acx + bcy \). Aber \(a \mid acx \) und \(a \mid bcy \), daher \(a \mid c \).

1.3 Primzahlen

Definition 1.3. Eine ganze Zahl \(n \) heißt Primzahl, wenn \(n > 1 \) gilt und die einzigen positiven Teiler von \(n \) die Zahlen 1 und \(n \) sind. Wenn \(n > 1 \) keine Primzahl ist, so nennen wir \(n \) zusammengesetzt.

Wenn nicht anders lautend, bezeichnen wir mit \(p, p', p_i, q, q' \) oder \(q_i \) immer Primzahlen.

Satz 1.6. Jede ganze Zahl \(n > 1 \) ist entweder eine Primzahl oder ein Produkt von Primzahlen.

Beweis. Wir führen den Beweis mittels Induktion nach \(n \). Der Satz ist klar für \(n = 2 \). Wir nehmen an, der Satz stimmt für alle ganzen Zahlen kleiner \(n \). Wenn \(n \) keine Primzahl ist, dann gibt es einen Teiler \(d \neq 1, n \), sodass \(n = cd \), mit \(c \neq n, 1 \). Nachdem \(c \) und \(d \) kleiner als \(n \) sind und größer als 1 folgt, dass sowohl \(c \) als auch \(d \) das Produkt von Primzahlen sind, und somit auch \(n \).

Satz 1.7 (Euclid). Es gibt unendlich viele Primzahlen.

Beweis. Nehmen wir an, es gibt nur endlich viele Primzahlen \(p_1, \ldots, p_k \). Sei \(N = p_1 \cdots p_k + 1 \). Dann ist \(N > 1 \) und somit ist \(N \) entweder prim oder ein Produkt von Primzahlen. Nachdem \(N \) größer als die \(p_i \) ist, kann es nicht prim sein. Außerdem teil kein \(p_i \) das \(N \) (sonst würde \(p_i \) die Differenz \(N - p_1 \cdots p_k = 1 \) teilen). Widerspruch zu Satz 1.6.

Satz 1.8. Wenn einen Primzahl \(p \) eine ganze Zahl \(a \) nicht teilt, dann gilt \((p,a) = 1 \).

Beweis. Sei \(d = (p,a) \). Dann gilt \(d \mid p \) und somit entweder \(d = 1 \) oder \(d = p \). Wenn \(d = p \) ist, dann folgt \(p \mid a \) – ein Widerspruch. Daher ist \(d = 1 \).

Satz 1.9. Wenn eine Primzahl \(p \) das Produkt \(ab \) teilt, dann gilt \(p \mid a \) oder \(p \mid b \).

Beweis. Nehmen wir an, dass \(p \mid ab \) aber \(p \nmid a \). Dann folgt mit Satz 1.8 dass \((p,a) = 1 \), und mit Satz 1.5 dass \(p \mid b \).

1.4 Der Fundamentalsatz der Arithmetik

Satz 1.10 (Fundamentalsatz der Arithmetik). Jede ganze Zahl \(n > 1 \) lässt sich als bis auf Vertauschung eindeutiges Produkt von Primfaktoren darstellen.
KAPITEL 1. DER FUNDAMENTALSATZ DER ARITHMETIK

Beispiel. Wir verwenden Induktion nach n. Der Satz stimmt für $n = 2$. Nehmen wir nun an, der Satz sei wahr für alle ganzen Zahlen größer als 1 und kleiner als n. Wenn n eine Primzahl ist, dann ist nichts zu zeigen. Nehmen wir also an, dass n zusammengesetzt ist und dass n zwei Faktorisierungen

\[n = p_1 p_2 \cdots p_s = q_1 q_2 \cdots q_t. \]

Wir zeigen zuerst, dass $s = t$ gilt, und danach, dass jedes p einem q entspricht. Nachdem p_1 das Produkt $q_1 \cdots q_t$ teilt, so teilt p_1 zumindest einen Faktor, sagen wir q_1. Nachdem q_1 prim ist, muss $p_1 = q_1$ gelten. Das heißt, wir können n durch p_1 teilen und erhalten

\[n/p_1 = p_2 \cdots p_s = q_2 \cdots q_t. \]

Wenn $s > 1$ oder $t > 1$, dann gilt $1 < n/p_1 < n$ und wir können die Induktionsvoraussetzung anwenden. Daher hat n/p_1 eine eindeutige Darstellung als Produkt von Primzahlen und somit auch n. \(\square\)

Nachdem ein und dieselbe Primzahl auch öfter in der Faktorisierung vorkommen kann. Schreiben wir kurz

\[n = p_1^{a_1} \cdots p_r^{a_r} = \prod_{i=1}^{r} p_i^{\nu_{p_i}(n)}, \]

wobei $\nu_{p_i}(n)$ die p-Bewertung von n ist, i.e. $\nu_{p_i}(n) = \max\{a \geq 0: p^a \mid n\}$.

Satz 1.11. Wenn $n = \prod_{i=1}^{r} p_i^{a_i}$, dann besteht die Menge der positiven Teiler von n aus der Menge der Zahlen der Form $\prod_{i=1}^{r} p_i^{c_i}$, wobei $0 \leq c_i \leq a_i$ für $i = 1, 2, \ldots, r$.

Satz 1.12. Seien a und b zwei positive ganze Zahlen mit der jeweiligen Faktorisierung

\[a = \prod_{i=1}^{\infty} p_i^{a_i} \quad \text{und} \quad b = \prod_{i=1}^{\infty} p_i^{b_i}. \]

Dann hat deren ggT die Faktorisierung

\[(a, b) = \prod_{i=1}^{\infty} p_i^{c_i}, \]

wobei jedes $c_i = \min\{a_i, b_i\}$.

1.5 Der Euklidische Algorithmus

Satz 1.13. Seien a und b zwei ganze Zahlen mit $b > 0$. Dann gibt es ein eindeutiges Paar q und r, sodass

\[a = bq + r, \quad \text{mit} \ 0 \leq r \leq b. \]

Bemerkung. Wir nennen q den Quotienten und r den Rest der Division von a durch b.

Beispiel. Sei S die folgende Menge nicht-negativer Zahlen

\[S = \{y : y = a - bx, x \in \mathbb{Z}, y \geq 0\}. \]
Das ist eine nicht-leere Menge nicht-negativer Zahlen und hat daher ein Minimum, sagen wir $a - bq$. Sei $r = a - bq$. Dann ist $a = bq + r$ und $r \geq 0$. Nun zeigen wir, dass $r < b$ ist. Nehmen wir an, das wäre nicht so. Dann gibt es $0 \leq r - b < r$. Aber $r - b \in S$, denn $r - b = a - b(q + 1)$. Daher ist $r - b \in S$ und kleiner als das Minimum; Widerspruch! Daher ist $r < b$. Das Paar q, r ist eindeutig, denn gäbe es noch ein Paar q', r' dann gilt $bq + r = bq' + r'$ und daher $b(q - q') = r' - r$. Damit gilt, dass $b \mid (r' - r)$. Wenn $r' - r \neq 0$ folgt daher $b \leq |r - r'|$, ein Widerspruch. Daher muss $r' = r$ und folglich auch $q' = q$ sein.

Obwohl Satz 1.13 nur die Existenz beweist, gibt er uns sogar eine Möglichkeit q und r zu bestimmen. Diesen Algorithmus haben wir im folgenden Satz zusammengefasst.

Satz 1.14 (Der Euklidische Algorithmus). Seien a und b zwei positive ganze Zahlen, wobei $b \nmid a$. Seien $r_0 = a$ und $r_1 = b$. Wir wenden den Divisionsalgorithmus von Satz 1.13 rekursiv an und erhalten eine Folge von Resten definiert durch die Gleichungen:

\[
\begin{align*}
 r_0 &= r_1 q_1 + r_2, \\
 r_1 &= r_2 q_2 + r_3, \\
 &\vdots \\
 r_{n-2} &= r_{n-1} q_{n-1} + r_n, \\
 r_{n-1} &= r_n q_n + r_{n+1},
\end{align*}
\]

Dann ist r_n der ggT von a und b.

Beweis. Es gibt einen Zustand in dem $r_{n+1} = 0$ ist, denn die r_i sind fallend und nicht-negativ. Die letzte Gleichung zeigt, dass $r_n \mid r_{n-1}$. Die vorletzte zeigt, dass $r_n \mid r_{n-2}$. Mittels Induktion sehen wir, dass r_n jedes r_i teilt und daher auch $r_0 = a$ und $r_1 = b$. Damit ist r_n ein gemeinsamer Teiler von a und b. Sei nun d ein beliebiger gemeinsamer Teiler von a und b. Die Definition von r_2 impliziert, dass $d \mid r_2$. Die nächste Gleichung besagt, dass $d \mid r_3$. Mittels Induktion erhalten wir, dass d jedes r_i teilt und damit auch r_n. Folglich ist r_n der ggT.
Kapitel 2

Arithmetische Funktionen und Dirichlet Reihen

2.1 Definitionen

Eine arithmetische Funktion \(f \) ist definiert auf den natürlichen Zahlen \(\mathbb{N} = \{1, 2, 3, \ldots \} \) und nimmt Werte in den komplexen Zahlen an. Zwei Klassen arithmetischer Funktionen spielen eine besondere Rolle: die additiven und multiplikativen arithmetischen Funktionen. Man nennt eine arithmetische Funktion additiv, wenn

\[
\text{(2.1) } f(mn) = f(m) + f(n), \quad ((m,n) = 1),
\]

und man nennt eine arithmetische Funktion multiplikativ, wenn

\[
\text{(2.2) } f(mn) = f(m)f(n), \quad ((m,n) = 1).
\]

Die zusätzliche Bedingung, dass \(f(1) = 1 \) ist, ist eine praktische Konvention um die Nullfunktion als multiplikative Funktion auszuschließen.

Das Hauptinteresse für diese Notation liegt in der Tatsache, dass die additiven und multiplikativen arithmetischen Funktionen die multiplikative Struktur von \(\mathbb{N} \) respektieren. Diese geschieht derart, dass der Funktionswert einer ganzen Zahl die Summe oder das Produkt der Funktionswerte über den Primzahlpotenzen, \(i.e. \)

\[
\text{für eine additive respektive eine multiplikative Funktion } f.
\]

Man nenne \(f \) komplett additive beziehungsweise komplett multiplikativ, wenn die Bedingungen \((2.1) \) oder \((2.2) \) auch erfüllt sind, wenn \((m,n) \neq 1 \). In diesem Fall gilt \(f(p^\nu) = \nu f(p) \) beziehungsweise \(f(p^\nu) = f(p)^\nu \). Des Weiteren nennt man \(f \) streng additiv oder streng multiplikativ, wenn neben \((2.1) \) oder \((2.2) \) auch \(f(p^\nu) = f(p) \) für alle \(\nu \geq 1 \) gilt.

2.2 Beispiele

Die folgenden arithmetischen Funktionen sind klassische Beispiele. Sie bezeichnen die fundamentalen Konzepte der multiplikativen Struktur der natürlichen Zahlen.
KAPITEL 2. ARITHMETISCHE FUNKTIONEN UND DIRICHLET REIHEN

Die Funktionen, die die Anzahl der Primfaktoren von \(n \) – mit oder ohne Vielfachheit – zählen, sind
\[
\Omega(n) := \sum_{p^\nu||n} \nu, \quad \omega(n) := \sum_{p^\nu||n} 1 = \sum_{p|n} 1.
\]

Die „Teileranzahlfunktion“ oder die Summe der \(k \)-ten Potenzen der Teiler sind definiert als
\[
\tau(n) := \sum_{d|n} 1, \quad \sigma(n)_k := \sum_{d|n} d^k \quad (k \in \mathbb{C}).
\]
Wir schreiben oft \(\sigma \) für \(\sigma_1 \).

Die eulersche \(\varphi \)-funktion zählt die Anzahl der invertierbaren Restklassen modulo \(n \), i.e
\[
\varphi(n) := \sum_{1 \leq h \leq n \atop (h,n)=1} 1.
\]

Die Möbiusfunktion \(\mu \) ist definiert als
\[
\mu(n) := \begin{cases} (-1)^{\omega(n)}, & \text{wenn } n \text{ quadratfrei ist}, \\ 0, & \text{sonst}. \end{cases}
\]

Die Mangoldt-Funktion ist definiert als
\[
\Lambda(n) := \begin{cases} \ln p, & \text{wenn } n = p^\nu \text{ für ein gewisses } \nu, \\ 0, & \text{sonst}. \end{cases}
\]
Es folgt unmittelbar aus der Definition, dass \(\Omega \) und \(\omega \) additiv sind; erstere komplett und zweitere streng additiv. Im Falle der Teileranzahlfunktion \(\tau \) ist es weniger offensichtlich. Nachdem die Teiler einer ganzen Zahl \(n \) genau die Zahlen der Form \(d = \prod_{p|n} p^{a_p} \) mit \(0 \leq a_p \leq \nu_p(n) \) sind, erhalten wir
\[
\tau(n) = \prod_{p|n} (\nu_p(n) + 1).
\]
Wir erhalten folgenden Satz.

Satz 2.1. Die Teileranzahlfunktion ist multiplikativ. Es gilt
\[
\tau(n) = \prod_{p^\nu||n} (\nu + 1) \quad (n \geq 1).
\]
Für die Summe der Potenzen der Teiler und die eulersche \(\varphi \)-Funktion werden wir das weiter unten analysieren. Wir bemerken für die Möbiusfunktion, dass
\[
\mu(p^\nu) = \begin{cases} -1, & \text{wenn } \nu = 1, \\ 0, & \text{wenn } \nu > 1. \end{cases}
\]
Wir erhalten also unmittelbar, dass \(\mu(n) = \prod_{p^\nu||n} \mu(p^\nu) \), und somit

Satz 2.2. Die Möbiusfunktion ist multiplikativ.
2.3 Formale Dirichlet-Reihen

Definition 2.1. Sei f eine arithmetische Funktion. Die zu f assoziierte Dirichlet-Reihe ist definiert als

$$D(f; s) := \sum_{n \geq 1} \frac{f(n)}{n^s}.$$

Die Summe und das Produkt zweier Dirichlet-Reihen sind definiert als

$$D(f; s) + D(g; s) = \sum_{n \geq 1} \frac{f(n) + g(n)}{n^s},$$

beziehungsweise

$$D(f; s)D(g; s) = \sum_{n \geq 1} \frac{h(n)}{n^s},$$

wobei

$$h(n) = \sum_{dd'=n} f(d)g(d').$$

(2.3)

Diese zweite Definition deckt sich mit unserer direkten Rechnung:

$$\sum_{m \geq 1} \frac{f(m)}{m^s} \sum_{k \geq 1} \frac{g(k)}{k^s} = \sum_{m \geq 1, k \geq 1} \frac{f(m)g(k)}{(mk)^s} = \sum_{n \geq 1} \frac{1}{n^s} \sum_{km=n} f(m)g(k).$$

Es ist einfach zu verifizieren, dass die Menge der formalen Dirichlet-Reihen zusammen mit den zwei Operationen einen kommutativen Ring bildet. Das Eins-Element ist die Serie

$$D(\delta; s) = 1,$$

assoziert zur arithmetischen Funktion

$$\delta(n) := \begin{cases} 1, & (n = 1) \\ 0, & (n > 1). \end{cases}$$

2.4 Der Ring der arithmetischen Funktionen

Die Beziehung zwischen arithmetischen Funktionen und ihren assoziierten Dirichlet-Reihen induziert eine Addition (+) und eine Multiplikation (*) auf der Menge der arithmetischen Funktionen:

$$D(f + g; s) = D(f; s) + D(g; s),$$

$$D(f \ast g; s) = D(f; s)D(g; s).$$

Das heißt, $(f + g)(n) = f(n) + g(n)$ und $(f \ast g)(n) = h(n)$, wobei $h(n)$ gegeben ist durch (2.3).
Das Produkt \ast heißt Dirichlet-Faltung. Diese Operationen geben der Menge A der arithmetischen Funktionen eine kommutative Ringstruktur, die isomorph zu jener der formalen Dirichlet-Reihen ist. Cashwell und Everett (1959) konnten zeigen, dass dieser Ring faktoriel, das heißt ganz und der Quotient mit der Gruppe der invertierbaren Elemente erfüllt eine Art Fundamentalsatz der Arithmetik, ist.

Eine hinreichende und notwendige Bedingung, dass $f \in A$ ist, ist, dass $f(1) \neq 0$. Unter dieser Hypothese haben wir eine Familie von Gleichungen der Gestalt

$$
\sum_{d|n} f(n/d)g(d) = \delta(n) \quad (n \geq 1),
$$

(2.4)

die es uns erlaubt g rekursiv zu berechnen:

$$
\begin{align*}
g(1) &= f(1)^{-1} \\
g(n) &= -f(1)^{-1} \sum_{d|n, d<n} f(n/d)g(d) \quad (n > 1).
\end{align*}
$$

Andererseits, wenn $f(1) = 0$, dann hat (2.4) keine Lösung für $n = 1$ und f ist nicht invertierbar.

Satz 2.3. Die Gruppe G der invertierbaren Elemente des Ringes A der arithmetischen Funktionen f besteht aus allen arithmetischen Funktionen f, sodass $f(1) \neq 0$.

Ein Element $\pi \in A$ ist prim, wenn es nicht invertierbar ist und wenn die Relation $\pi = u \ast v$ impliziert, dass u oder v invertierbar sind. Man überprüft leicht, dass die Menge der Primelemente von A die Menge der Funktionen f, sodass $f(1) = 0$ und $f(p) \neq 0$ für eine Primzahl p, strikt enthält.

Die multiplikativen Funktionen sind invertierbar, denn sie erfüllen $f(1) = 0$ per Definition. Das folgende Resultat zeigt uns, dass sie eine Untergruppe von G bilden.

Satz 2.4. Eine notwendige und hinreichende Bedingung für eine Funktion $f \in A$ um multiplikativ zu sein ist, dass die assoziierte formale Dirichlet-Reihe $D(f; s)$ sich in ein formales unendliches Euler-Produkt entwickeln lässt:

$$
D(f; s) = \prod_p \left(1 + \sum_{\nu \geq 1} \frac{f(p^\nu)}{p^{\nu s}} \right).
$$

(2.5)

Dieser Satz folgt unmittelbar daraus, dass Relation (2.5) algebraisch äquivalent zu den Bedingungen

$$
f(1) = 1, \quad f(n) = \prod_{p^\nu || n} f(p^\nu) \quad (n > 1),
$$

ist.

Satz 2.5. Die Menge M der multiplikativen arithmetischen Funktionen ist eine Untergruppe der Gruppe der invertierbaren Elemente von A.

Beweis. Seien f und g in M. Dann erhalten wir unmittelbar, dass

$$
D(f; s)D(g; s) = \prod_p \left(1 + \sum_{\nu \geq 1} \frac{f(p^\nu)}{p^{\nu s}} \right) \left(1 + \sum_{\nu \geq 1} \frac{g(p^\nu)}{p^{\nu s}} \right) = \prod_p \left(1 + \sum_{\nu \geq 1} \frac{h(p^\nu)}{p^{\nu s}} \right),
$$

wobei

$$
h(p^\nu) = f(p^\nu)g(p^\nu) = \sum_{d|n, d<n} f(n/d)g(d) \quad (n \geq 1).
$$

Unter Hypothese der Funktion $h(1) \neq 0$. Dann konstruieren wir rekursiv eine Familie von Funktionen $h(n)^{\nu}$, die es uns erlauben, $h(n)$ zu berechnen, wobei

$$
h(n) = \sum_{d|n, d<n} f(n/d)g(d) \quad (n \geq 1).
$$

Andererseits, wenn $h(1) = 0$, dann hat (2.5) keine Lösung für $n = 1$ und h ist nicht invertierbar.
2.4. DER RING DER ARITHMETISCHEN FUNKTIONEN

wobei \(h(p^\nu) \) durch die Relation
\[
 h(p^\nu) = \sum_{0 \leq j \leq \nu} f(p^j) g(p^{\nu-j}) \tag{2.6}
\]
definiert ist. Aus der Definition \(D(f; s) D(g; s) = D(f \ast g; s) \) folgt, dass \(f \ast g \) mit der in (2.6) definierten Funktion in jeder Primzahl übereinstimmt.

Es bleibt zu überprüfen, dass die Inverse \(\tilde{f} \) einer jeden Funktion \(f \in \mathbb{M} \) wieder in \(\mathbb{M} \) liegt. Die Anwendung der Gleichung (2.4) mit \(g = \tilde{f} \), \(n = 1 \) und \(n = p^\nu \) impliziert, dass \(\tilde{f}(1) = 1 \) und dass
\[
 \left(1 + \sum_{\nu \geq 1} \frac{f(p^\nu)}{p^{\nu s}} \right) \left(1 + \sum_{\nu \geq 1} \frac{\tilde{f}(p^\nu)}{p^{\nu s}} \right) = 1
\]
gilt für jede Primzahl \(p \). Daher ist
\[
 D(f; s) \prod_p \left(1 + \sum_{\nu \geq 1} \frac{f(p^\nu)}{p^{\nu s}} \right) = 1 = D(f; s) D(\tilde{f}; s)
\]
und Gleichung (2.5) ist erfüllt für \(\tilde{f} \). Nach Satz 2.4 ist \(\tilde{f} \in \mathbb{M} \). \(\square \)

Sei \(1 \) die arithmetische Funktion definiert durch
\[
 1(n) = 1 \quad (n \geq 1).
\]

Also \(1 \) ist trivialerweise multiplikative und es gilt für jedes \(n \geq 1 \), dass
\[
 \tau(n) = \sum_{d \mid n} 1 = \sum_{d \mid n} 1(d) 1(n/d)
\]
und somit, dass
\[
 \tau = 1 \ast 1.
\]

Das zeigt uns erneut, dass \(\tau \) eine multiplikative Funktion ist. Bezeichnen wir mit \(j \) die Identität, \(i.e. \)
\[
 j(n) = n \quad (n \geq 1).
\]

Dann gilt
\[
 \sigma = 1 \ast j
\]
und somit erhalten wir

Satz 2.6. Die "Teilersumme" \(\sigma \) ist multiplikativ.

Es gilt dasselbe für die Funktionen
\[
 \sigma_k = \sum_{d \mid n} d^k = (1 \ast j^k)(n)
\]
für jedes komplexe \(k \).
2.5 Die Möbius’sche Inversionsformel

Für jede Primzahl \(p \) und für jede ganze Zahl \(\nu \geq 0 \) gilt

\[
(1 \ast \mu)(p^\nu) = \sum_{j=0}^{\nu} \mu(p^j) = \begin{cases} 1 \text{ wenn } \nu = 0 \\ 0 \text{ wenn } \nu \geq 1 \end{cases} = \delta(p^\nu).
\]

Nachdem \(1 \ast \mu \) und \(\delta \) multiplikativ sind, sind die zwei Funktionen gleich.

Satz 2.7. *Die Möbiusfunktion ist die Inverse der Funktion 1 bezüglich der Faltung \(\ast \). Es gilt*

\[
1 \ast \mu = \delta \tag{2.7}
\]

oder gleichbedeutend

\[
\sum_{d|n} \mu(d) = \begin{cases} 1 \quad (n = 1), \\ 0 \quad (n > 1). \end{cases} \tag{2.8}
\]

Dafür, dass dieser Satz sehr trivial anmutet hat Gleichung [2.8] derartig viele Anwendungen. Vor allem dient diese Gleichung als Startpunkt für die kombinatorische Siebtheorie.

Satz 2.8 (Erste Möbius’sche Inversionsformel). *Seien \(f \) und \(g \) arithmetische Funktionen. Die folgenden zwei Eigenschaften sind äquivalent*

\[
(i) \quad g(n) = \sum_{d|n} f(d) \quad (n \geq 1),
\]

\[
(ii) \quad f(n) = \sum_{d|n} g(d)\mu(n/d) \quad (n \geq 1).
\]

Beweis. Die Gleichung \((i)\) bedeutet \(g = f \ast 1 \) und Gleichung \((ii)\) bedeutet \(f = g \ast \mu \). Der Rest folgt aus Gleichung [2.7]. ∎

Betrachten wir nun die folgende Verallgemeinerung für eine reelle Variable.

Satz 2.9 (Zweite Möbius’sche Inversionsformel). *Seien \(F \) und \(G \) zwei Funktion definiert auf \([1, +\infty[\). Die folgenden zwei Gleichungen sind äquivalent:

\[
(i) \quad F(x) = \sum_{n \leq x} G(x/n) \quad (x \geq 1)
\]

\[
(ii) \quad G(x) = \sum_{n \leq x} \mu(n)F(x/n) \quad (x \geq 1).
\]

Beweis. Wir zeigen, dass \((i) \Rightarrow (ii)\). Die Umkehrung ist analog. Für \(x \geq 1 \) gilt

\[
\sum_{n \leq x} \mu(n)F(x/n) = \sum_{n \leq x} \mu(n) \sum_{m \leq x/n} G(x/mn) = \sum_{k \leq x} G(x/k) \sum_{mn=k} \mu(m).
\]

Nach [2.8] ist die innere Summe \(\delta(k) \). Daraus folgt \((ii)\). ∎
Eine Anwendung von Satz 2.9 im Falle \(G(x) \equiv 1 \) liefert
\[
\sum_{n \leq x} \mu(n) \left\lfloor \frac{x}{n} \right\rfloor = 1 \quad (x \geq 1).
\]
Das lässt uns folgendes vermuten
\[
\lim_{x \to \infty} \sum_{n \leq x} \frac{\mu(n)}{n} = 0.
\]
Wir werden später zeigen, dass dies äquivalent zum Primzahlsatz ist.

2.6 Die eulersche \(\phi \)-Funktion

Wir haben gesagt, dass für \(n \geq 1 \), \(\varphi(n) \) gleich der Anzahl der invertierbaren Restklassen modulo \(n \) ist. Daher können wir schreiben
\[
\varphi(n) = \sum_{1 \leq m \leq n} \delta ((m, n)).
\]

Eine Anwendung von (2.7) liefert uns
\[
\varphi(n) = \sum_{m \leq n} \sum_{d \mid (m,n)} \mu(d) = \sum_{d \mid n} \mu(d) \sum_{m \leq n, \text{mod } d} 1 = \sum_{d \mid n} \mu(d) \frac{n}{d}.
\]
Dies entspricht
\[
\varphi = \mu \ast j. \quad (2.9)
\]
Insbesondere erhalten wir für alle Primzahlen \(p \), dass
\[
\varphi(p^\nu) = \mu(1)p^\nu + \mu(p)p^{\nu-1} = p^\nu \left(1 - \frac{1}{p} \right).
\]
Wir haben damit folgenden Satz bewiesen.

Satz 2.10. Die eulersche \(\varphi \)-Funktion ist multiplikativ. Für \(n \geq 1 \) gilt
\[
\varphi(n) = n \prod_{p \mid n} \left(1 - \frac{1}{p} \right).
\]

Ein anderer Beweis dieses Resultats besteht aus der Bemerkung, dass sich jede rationale Zahl \(h/n \) in eindeutiger Art und Weise als \(h/n = a/d \) mit \(d \mid n \) und \((a, d) = 1 \) schreiben lässt. Für jede reelle Funktion \(F \) gilt dann
\[
\sum_{1 \leq h \leq n} F(h/n) = \sum_{d \mid n} \sum_{1 \leq a \leq d, (a, d) = 1} F(a/d).
\]
Wenn wir diese Gleichung im Fall \(F(x) \equiv 1 \) anwenden, folgt
\[
n = \sum_{d \mid n} \varphi(d).
\]
Mit anderen Worten \(j = 1 \ast \varphi \); das Resultat folgt also mittels (2.7).
2.7 Ableitungen arithmetischer Funktionen

Definition 2.2. Für eine arithmetische Funktion \(f \) definieren wir ihre Ableitung \(f' \) als die arithmetische Funktion
\[
f'(n) = f(n) \log n \quad (n \geq 1).
\]

Beispiele. Nachdem \(\delta(n) \log n = 0 \) für alle \(n \) ist, erhalten wir, dass \(\delta'(n) = 0 \) ist. Nachdem \(1(n) = 1 \) für alle \(n \), gilt \(1'(n) = \log n \). Damit können wir die Formel \(\sum_{d|n} \Lambda(d) = \log n \) schreiben als
\[
\Lambda \ast 1 = 1'.
\]

Diese Ableitung hat auch einige Eigenschaften einer gewöhnlichen Ableitung.

Satz 2.11. Seien \(f \) und \(g \) arithmetische Funktionen. Dann gilt:
1. \((f + g)' = f' + g'\).
2. \((f \ast g)' = f' \ast g + f \ast g'\).
3. \((f^{-1})' = -f' \ast (f \ast f)^{-1}\), falls \(f(1) \neq 0 \).

Beweis. Aussage 1. ist klar. Um Aussage 2. zu zeigen verwenden wir die folgende Formel
\[
\log n = \log d + \log \left(\frac{n}{d} \right).
\]
Daher
\[
(f \ast g)'(n) = \sum_{d|n} f(d)g\left(\frac{n}{d} \right) \log n
\]
\[
= \sum_{d|n} f(d) \log d g\left(\frac{n}{d} \right) + \sum_{d|n} f(d)g\left(\frac{n}{d} \right) \log \left(\frac{n}{d} \right)
\]
\[
= (f' \ast g)(n) + (f \ast g')(n).
\]
Für Aussage 3. verwenden wir Aussage 2. und \(\delta' = 0 \). Nachdem \(\delta = f \ast f^{-1} \) ist, erhalten wir
\[
0 = (f \ast f^{-1})' = f' \ast f^{-1} + f \ast (f^{-1})'.
\]
Daher
\[
f \ast (f^{-1})' = -f' \ast f^{-1}.
\]

Multiplikation mit \(f^{-1} \) gibt
\[
(f^{-1})' = -(f' \ast f^{-1}) \ast f^{-1} = -f' \ast (f^{-1} \ast f^{-1}).
\]
Aber \(f^{-1} \ast f^{-1} = (f \ast f)^{-1} \) und somit ist Aussage 3. bewiesen. \(\square \)
Kapitel 3

Mittelwerte arithmetischer Funktionen

3.1 Riemann-Stieltjes-Integral

Um einfacher zwischen Summen und Integralen hin und her zu wechseln, wollen wir den Begriff des Riemann-Stieltjes-Integrales einführen.

Definition 3.1. Seien f eine arithmetische Funktion, $F(t) = \sum_{n \leq t} f(n)$ die summatorische Funktion von f und $0 < a < b$. Sei g linksstetig auf allen ganzen Zahlen in $(a, b]$. Dann ist

$$\int_a^b g dF = \sum_{a < n \leq b} g(n) f(n).$$

Die folgende Definition hilft uns, ein Riemann-Stieltjes-Integral in ein gewöhnliches (Riemann-)Integral umzuwandeln.

Definition 3.2. Seien f und g Riemann-integrierbare Funktionen auf einem beschränkten Intervall $[1, X]$. Sei $F(x) = \int_1^x f(t) dt$ für alle $x \geq 1$. Seien $1 \leq a < b < \infty$. Dann

$$\int_a^b g dF = \int_a^b g(x) f(x) dx.$$

3.2 Abelsche Summation

Wir bezeichnen folgenden Satz als Abelsche Summation oder auch partielle Summation.

Satz 3.1 (Abelsche Summation). Für eine beliebige arithmetische Funktion a sei

$$A(x) = \sum_{n \leq x} a(n),$$

wobei $A(x) = 0$ if $x < 1$. Nehmen wir an, dass f eine stetige Ableitung auf dem Intervall $[y, x]$ mit $0 < y < x$ besitzt. Dann gilt

$$\sum_{y < n \leq x} a(n) f(n) = A(x) f(x) - A(y) f(y) - \int_y^x A(t) f'(t) dt.$$
Bemerkung. Die Abelsche Summation entspricht der partiellen Integration für Riemann-Stieltjes-Integral, denn

\[
\int_y^x f \, dA = \sum_{y<n \leq x} a(n)f(n) = A(x)f(x) - A(y)f(y) - \int_y^x A(t)f'(t)dt
\]

\[
= A(x)f(x) - A(y)f(y) - \int_y^x Adf
\]

Beweis. Sei \(k = \lfloor x \rfloor \text{ und } m = \lfloor y \rfloor\), sodass \(A(x) = A(k)\) und \(A(y) = A(m)\). Dann

\[
\sum_{y<n \leq x} a(n)f(n) = \sum_{n=m+1}^{k} a(n)f(n) = \sum_{n=m+1}^{k} \{A(n) - A(n-1)\}f(n)
\]

\[
= \sum_{n=m+1}^{k} A(n)f(n) - \sum_{n=m}^{k} A(n)f(n+1)
\]

\[
= \sum_{n=m+1}^{k} A(n)(f(n) - f(n+1) + A(k)f(k) - A(m)f(m+1))
\]

\[
= -\sum_{n=m+1}^{k-1} A(n) \int_n^{n+1} f'(t)dt + A(k)f(k) - A(m)f(m+1)
\]

\[
= -\sum_{n=m+1}^{k-1} \int_n^{n+1} A(t)f'(t)dt - A(k)f(k) + A(m)f(m+1)
\]

\[
= -\int_{m+1}^{k} A(t)f'(t)dt + A(x)f(x) - \int_{k}^{x} A(t)f'(k)dt
\]

\[
- A(y)f(y) - \int_{y}^{m+1} A(t)f'(t)dt
\]

\[
= A(x)f(x) - A(y)f(y) - \int_{y}^{x} A(t)f'(t)dt.
\]

\[\square\]

Satz 3.2. Sei \(f\) eine reelle monotone Funktion auf einem Intervall \([a, b]\) mit \(a, b \in \mathbb{Z}\). Es gibt eine reelles \(\vartheta = \vartheta(a, b)\), mit \(0 \leq \vartheta \leq 1\), sodass

\[
\sum_{a<n \leq b} f(n) = \int_{a}^{b} f(t)dt + \vartheta(f(b) - f(a)).
\]

Beweis. Wir führen das Riemann-Stieltjes-Integral von \(f\) bezüglich dem Maß \(d|t|\) ein. Damit erhalten wir

\[
\sum_{a<n \leq b} f(n) - \int_{a}^{b} f(t)dt = \int_{a}^{b} f(t)d|t| - \int_{a}^{b} f(t)dt = -\int_{a}^{b} f(t)d\{t\}.
\]
3.3. **EULER-MACLAURIN-FORMEL**

Partielle Integration liefert

\[[-f(t)\{t\}]_a^b + \int_a^b \{t\} df(t) = \int_a^b \{t\} df(t). \]

Nehmen wir an, dass \(f \) monoton steigend ist, dann ist das Maß \(df \) positiv. Das letzte Integral wird zu \(\vartheta(f(b) - f(a)) \) mit \(0 \leq \vartheta \leq 1 \).

\[\Box \]

Korollar 3.3. Für \(n \geq 1 \) gilt \(\ln n! = n \ln n - n + 1 + \vartheta \ln n \) mit \(\vartheta = \vartheta_n \in [0,1] \).

3.3 Euler-Maclaurin-Formel

Die Euler-Maclaurin-Formel der Ordnung \(k = 0 \) lässt sich leicht aus der Abelschen Summation gewinnen.

Satz 3.4. Wenn \(f \) eine stetige Ableitung \(f' \) auf dem Intervall \([a,b]\), mit \(0 < a < b \), hat, dann gilt

\[\sum_{a < n \leq b} f(n) = \int_a^b f(t) dt + \int_a^b (t - \lfloor t \rfloor) f'(t) dt + f(b)(\lfloor b \rfloor - b) - f(a)(\lfloor a \rfloor - a). \]

Beweis. Wir verwenden Abelsche Summation (Satz 3.1) mit \(a = 1 \). Dann gilt

\[\sum_{y < n \leq x} f(n) = f(x) \lfloor x \rfloor - f(y) \lfloor y \rfloor \int_y^x \lfloor t \rfloor f'(t) dt. \]

Zusammen mit

\[\int_y^x t f'(t) dt = x f(x) - y f(y) - \int_y^x f(t) dt \]

beweist das den Satz. \(\Box \)

Betrachten wir die Folge \(\{b_r(x)\}_{r \geq 0} \) von rekursiv definierten Polynomen auf \([0,1]\):

\[b_0(x) \equiv 1, \]

\[b'_r(x) \equiv rb_{r-1}(x) \quad (r \geq 1), \]

\[\int_0^1 b_r(x) dx = 0 \quad (r \geq 1). \]

Man verifiziert leicht, dass diese Polynome der folgenden Identität genügen:

\[\sum_{r=0}^{\infty} b_r(x)\frac{y^r}{r!} = \frac{ye^{xy}}{e^y - 1}. \]
Diese Identität erlaubt es uns, die ersten \(b_r \) auszurechnen:

\[
\begin{align*}
 b_0(x) &= 1 \\
 b_1(x) &= x - \frac{1}{2} \\
 b_2(x) &= x^2 - x + \frac{1}{6} \\
 b_3(x) &= x^3 - \frac{3}{2}x^2 + \frac{1}{2}x \\
 b_4(x) &= x^4 - 2x^3 + x^2 - \frac{1}{30} \\
 b_5(x) &= x^5 - \frac{5}{2}x^4 + \frac{5}{3}x^3 - \frac{1}{6}x
\end{align*}
\]

Wir definieren nun die \(r \)-te Bernoulli-Funktion als eine periodische Funktion mit Periode 1, die mit \(b_r \) auf dem Intervall \([0, 1]\) übereinstimmt. Des weiter definieren wir die \(r \)-te Bernoulli-Zahl \(B_r \) als

\[
B_r = B_r(0).
\]

Sei nun \(f \) eine Funktion der Klasse \(C^{k+1} \) auf dem Intervall \([a, b]\), mit \(a, b \in \mathbb{Z} \). Nachdem \(B_1(x) = \{x\} - \frac{1}{2} \) ist, gilt

\[
\sum_{a<n\leq b} f(n) = \int_a^b f(t)d[t] = \int_a^b f(t)dt - \int_a^b f(t)dB_1(t).
\]

Wenn wir das letzte Integral mittels partieller Integration lösen, erhalten wir

\[
\int_a^b f(t)dB_1(t) = B_1(f(b) - f(a)) - \int_a^b B_1(t)f'(t)dt
\]

\[
= B_1(f(b) - f(a)) - \frac{1}{2} \int_a^b f'(t)dB_2(t).
\]

Es ist nicht schwer, einzusehen, dass \(B_2(t) \) stetig ist auf \(\mathbb{R} \) und differenzierbar auf \(\mathbb{R} \setminus \mathbb{Z} \), wobei es \(B_2'(t) = 2B_1(t) \) genügt. Darüberhinaus für \(r \geq 3 \) ist \(B_r(t) \) differenzierbar auf ganz \(\mathbb{R} \) und erfüllt

\[
B_r'(t) = r B_{r-1}(t).
\]

Man kann also das Integral relativ zu \(B_2(t) \) mittels partieller Integration entwickeln und erhält ein Integral mit \(B_3(t) \). Iteration dieses Arguments gibt folgenden

Satz 3.5 (Euler-Maclaurin-Formel). Für jedes ganze \(k \geq 0 \) und jede Funktion \(f \) der Klasse \(C^{k+1}([a, b]) \) mit \(a, b \in \mathbb{Z} \), gilt

\[
\sum_{a<n\leq b} f(n) = \int_a^b f(t)dt + \sum_{r=0}^k \frac{(-1)^r+1}{(r+1)!} \left(f^{(r)}(b) - f^{(r)}(a) \right)
\]

\[
+ \frac{(-1)^k}{(k+1)!} \int_a^b B_{k+1}(t)f^{(k+1)}(t)dt.
\]

Als unmittelbare Anwendung liefert die Euler-Maclaurin-Formel uns eine sehr gute Abschätzung für die Harmonische Reihe.

Satz 3.6. Für \(n \geq 1 \) gilt

\[
\sum_{m\leq n} \frac{1}{m} = \ln n + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + \frac{\vartheta}{60n^4},
\]

wobei \(\gamma \) die Euler-Mascheroni-Konstante ist und \(\vartheta = \vartheta_n \in [0, 1] \).
3.4. DAS PROBLEM VON DIRICHLET UND DIE HYPERBELMETHODE

Beweis. Eine Anwendung des Satzes 3.5 mit \(f(t) = 1/t, a = 1, b = n \) und \(k = 3 \) liefert

\[
\sum_{2 \leq m \leq n} \frac{1}{m} = \ln n + \frac{1}{2} \left(\frac{1}{n} - 1 \right) - \frac{1}{12} \left(\frac{1}{n^2} - 1 \right) + \frac{1}{120} \left(\frac{1}{n^3} - 1 \right) - \int_1^n t^{-5} B_4(t) dt.
\]

Wenn wir den Term, der zu \(m = 1 \) gehört, hinzufügen und \(n \) gegen unendlich streben lassen, erhalten wir

\[
\gamma = \frac{1}{2} + \frac{1}{2} - \frac{1}{120} - \int_1^\infty t^{-5} B_4(t) dt.
\]

Das Resultat hängt also implizit an der Abschätzung

\[
\left| \int_1^n t^{-5} B_4(t) dt \right| \leq \frac{1}{120n^4},
\]

die wiederum aus \(|B_4(t)| \leq \frac{1}{30}\) für alle \(t \) folgt.

3.4 Das Problem von Dirichlet und die Hyperbelmethode

Wir wollen den Mittelwert der Teileranzahl \(\tau(n) \) bestimmen. Einfaches Vertauschen der Summation liefert

\[
\sum_{n \leq x} \tau(n) = \sum_{n \leq x} \sum_{d \mid n} 1 = \sum_{d \leq x} \sum_{n \leq x \mod d} 1 = \sum_{d \leq x} \left\lfloor \frac{x}{d} \right\rfloor
\]

\[
= \sum_{d \leq x} \left(\frac{x}{d} + \mathcal{O}(1) \right) = x \ln x + \mathcal{O}(x).
\]

Diese Abschätzung können wir verbessern, indem wir die Symmetrie des Summationsbereiches ausnutzen.

Satz 3.7. Seien \(f \) und \(g \) zwei arithmetische Funktionen und \(F \) beziehungsweise \(G \) deren summatorische Funktionen. Dann gilt für \(1 \leq y \leq x \)

\[
\sum_{n \leq x} f \ast g(n) = \sum_{n \leq y} g(n) F(x/n) + \sum_{m \leq x/y} f(m) G(x/m) - F(x/y) G(y).
\]

Beweis. Wir können die linke Seite der Gleichung schreiben als

\[
\sum_{md \leq x} f(m)g(d) = \sum_{md \leq x, d \leq y} f(m)g(d) + \sum_{md \leq x, d > y} f(m)g(d)
\]

\[
= \sum_{d \leq y} g(d) F(x/d) + \sum_{m \leq x/y} f(m) \left\{ G(x/m) - G(y) \right\}.
\]

Dies liefert das gewünschte Resultat, wenn wir den letzten Term entwickeln.

Dieser Satz ermöglicht es uns, den Mittelwert für die Teileranzahl zu verbessern.

Satz 3.8. Für \(x \) gegen unendlich gilt

\[
\sum_{n \leq x} \tau(n) = x (\ln x + 2\gamma - 1) + \mathcal{O} (\sqrt{x}),
\]

wobei \(\gamma \) die Euler-Mascheroni-Konstante ist.
KAPITEL 3. MITTELWERTE ARITHMETISCHER FUNKTIONEN

Beweis. Wir wenden Satz 3.7 mit \(f = g = 1, \ F(x) = G(x) = \lfloor x \rfloor \) und \(y = \sqrt{x} \) an und erhalten
\[
\sum_{n \leq x} \tau(n) = 2 \sum_{m \leq \sqrt{x}} \lfloor x/m \rfloor - \lfloor \sqrt{x} \rfloor^2 = 2x \sum_{m \leq \sqrt{x}} \frac{1}{m} - x + O(\sqrt{x}).
\]
Nach Satz 3.6 folgt, dass die Summe über \(m \) gleich \(\frac{1}{2} \ln x + \gamma + O(1/\sqrt{x}) \) ist. Das liefert uns den Satz.

Als nächstes wollen wir uns der Teilersumme zuwenden.

Satz 3.9. Für \(x \) gegen unendlich gilt
\[
\sum_{n \leq x} \sigma(n) = \frac{1}{12} \pi^2 x^2 + O(x \ln x).
\]

Beweis. Wir wollen \(\sigma \) als Dirichlet-Faltung schreiben und Satz 3.7 anwenden. Also
\[
\sum_{n \leq x} \sigma(n) = \sum_{md \leq x} m = \frac{1}{2} \sum_{d \leq x} \left\lfloor \frac{x}{d} \right\rfloor \left(\left\lfloor \frac{x}{d} \right\rfloor + 1 \right) = \frac{1}{2} \sum_{d \leq x} \frac{x^2}{d^2} + O \left(x \sum_{d \leq x} \frac{1}{d} \right).
\]
Nachdem
\[
\sum_{d \geq 1} \frac{1}{d^2} = \frac{\pi^2}{6}
\]
ist, erhalten wir den Satz.

Für die eulersche \(\varphi \)-Funktion erhalten wir folgenden Mittelwert.

Satz 3.10. Für \(x \) gegen unendlich gilt
\[
\sum_{n \leq x} \varphi(n) = \frac{3}{\pi^2} x^2 + O(x \ln x).
\]

Beweis. Mit der Darstellung \(\varphi = \mu * j \) erhalten wir
\[
\sum_{n \leq x} \varphi(n) = \sum_{md=n} \mu(d)m = \sum_{d \leq x} \mu(d) \sum_{m \leq x/d} m = \frac{1}{2} \sum_{d \leq x} \mu(d) \left\lfloor \frac{x}{d} \right\rfloor \left(\left\lfloor \frac{x}{d} \right\rfloor + 1 \right) = \frac{x^2}{2} \sum_{d \leq x} \frac{\mu(d)}{d^2} + O \left(x \sum_{d \leq x} \frac{1}{d} \right).
\]
Nachdem die Möbiusfunktion das Inverse der Funktion \(1 \) ist, erhalten wir formell
\[
\left(\sum_{d \geq 1} \frac{\mu(d)}{d^2} \right)
\left(\sum_{d \geq 1} \frac{1}{d^2} \right) = 1.
\]
Beide Reihen konvergieren und damit erhalten wir, dass
\[
\sum_{d \geq 1} \frac{\mu(d)}{d^2} = \frac{6}{\pi^2}.
\]
3.5. QUADRATFREIE ZAHLEN

Für jede ganze Zahl $N \geq 1$ bezeichnet man als Farey-Folge F_N die Folge der reduzierten rationalen Zahlen in $[0,1]$ deren Nenner N nicht übersteigt, i.e.

$$
F_1 = \left\{ \frac{0}{1}, \frac{1}{1} \right\}, \quad F_2 = \left\{ \frac{0}{1}, \frac{1}{2}, \frac{1}{1} \right\}, \quad F_3 = \left\{ \frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1} \right\}, \quad \text{etc.}
$$

Mittels der φ-Funktion erhalten wir

$$|F_N| = 1 + \sum_{n \leq N} \varphi(n).$$

Eine Anwendung von Satz 3.10 liefert

$$|F_N| \sim \frac{3}{\pi^2} N^2 \quad (N \to \infty).$$

Auf ähnliche Art und Weise können wir die Anzahl der Teilerfremden Paare (m,n) in einem Rechteck $[1,x] \times [1,y]$ bestimmen.

Satz 3.11. Bezeichne $G(x,y)$ die Anzahl der Paare ganzer Zahlen, sodass $1 \leq m \leq x$, $1 \leq n \leq y$ und $(m,n) = 1$. Dann gilt $G(x,y) \sim (6/\pi^2)xy$ für x und y gegen unendlich. Genauer gesagt, für $z := \min(x,y)$ gilt

$$G(x,y) = xy \left\{ \frac{6}{\pi^2} + O \left(\frac{\ln z}{z} \right) \right\} \quad (x,y \geq 2).$$

Beweis.

$$
G(x,y) = \sum_{m \leq x, n \leq y} \delta((m,n)) = \sum_{d \leq z} \mu(d) \left\lfloor \frac{x}{d} \right\rfloor \left\lfloor \frac{y}{d} \right\rfloor
$$

$$
= xy \sum_{d \leq z} \frac{\mu(d)}{d^2} + O \left((x+y) \sum_{d \leq z} \frac{1}{d} \right)
$$

$$
= xy \left\{ \frac{6}{\pi^2} + O \left(\frac{1}{z} + \left(\frac{1}{x} + \frac{1}{y} \right) \ln z \right) \right\}.
$$

3.5 Quadratfreie Zahlen

Wenn eine arithmetische Funktion nur die Werte 0 und 1 annimmt, kann man von einer Indikatorfunktion für eine Teilmenge A der natürlichen Zahlen sprechen. Dann interessiert man sich für die Zahlfunktion

$$A(x) := |A \cap [1,x]|.$$

Die multiplikative Funktion $n \mapsto \mu(n)^2$ ist ein gutes Beispiel für solch eine Funktion. Ihre summatorische Funktion

$$Q(x) := \sum_{n \leq x} \mu(n)^2.$$

zählt die Anzahl der quadratfreien Zahlen kleiner gleich x.
KAPITEL 3. MITTELWERTE ARITHMETISCHER FUNKTIONEN

Satz 3.12. Für x gegen unendlich gilt

$$Q(x) = \frac{6}{\pi^2} x + \mathcal{O}\left(\sqrt{x}\right).$$

Beweis. Wie in den Fällen von $\tau(n)$, $\sigma(n)$ oder $\varphi(n)$ suchen wir eine Darstellung als Dirichlet-Faltung. Wir bemerken, dass jede ganze Zahl n eine Darstellung der Form

$$n = qm^2, \quad \mu(q)^2 = 1$$

hat. Diese ist sogar eindeutig, denn q ist das Produkt aller Primfaktoren deren Exponenten ungerade ist. Also haben wir

$$\mu(n)^2 = \delta(m) = \sum_{d|m} \mu(d).$$

Wir bemerken, dass $d | m$ bedeutet, dass $d^2 | n$. Daher

$$Q(x) = \sum_{n \leq x} \mu(d) = \sum_{d \leq \sqrt{x}} \mu(d) \left\lfloor \frac{x}{d^2} \right\rfloor = \frac{6}{\pi^2} x + \mathcal{O}\left(x \sum_{d > \sqrt{x}} \frac{1}{d^2} + \sqrt{x} \right).$$

Bemerkung. Wir hätten gleichermaßen folgende Überlegungen machen können. Für jedes $m \leq \sqrt{x}$ bezeichnen wir mit A_m die Menge aller ganzen Zahlen $n \leq x$ für die (3.2) gilt. Nachdem diese Darstellung eindeutig ist, ist $\{n: n \leq x\}$ die disjunkte Vereinigung der A_m und es gilt

$$|A_m| = Q(x/m^2),$$

wobei

$$\sum_{m \leq \sqrt{x}} Q(x/m^2) = [x] \quad (x \geq 1).$$

Setzen wir $x = y^2$ und wenden wir die zweite Möbius’sche Inversionsformel auf die Funktionen $F(x) = \lfloor y^2 \rfloor$ und $G(y) = Q(y^2)$ an. Dann erhalten wir, wie oben

$$Q(x) = \sum_{d \leq \sqrt{x}} \mu(d) \left\lfloor \frac{x}{d^2} \right\rfloor \quad (x \geq 1).$$

Das folgende Resultat zeigt, wie der Primzahlsatz die Abschätzung verbessern könnte.

Satz 3.13. Unter der Hypothese, dass

$$M(x) = \sum_{n \leq x} \mu(n) = o(x),$$

erhalten wir

$$Q(x) = \frac{6}{\pi^2} x + o(\sqrt{x}) \quad (x \to \infty).$$
3.5. QUADRATFREIE ZAHLEN

Beweis. Gleichung (3.3) entspricht

\[\mu^2 = \lambda \ast 1, \]

wobei

\[\lambda = \begin{cases}
\mu(d) & \text{wenn } n = d^2, \\
0 & \text{wenn } n \text{ kein Quadrat ist.}
\end{cases} \]

Damit bekommen wir für \(1 \leq y \leq x, \)

\[
Q(x) = \sum_{d \leq \sqrt{x/y}} \mu(d) \left\lfloor \frac{x}{d^2} \right\rfloor + \sum_{m \leq y} M \left(\sqrt{\frac{x}{m}} \right) - \lfloor y \rfloor M \left(\sqrt{\frac{x}{y}} \right)
\]

\[= \sum_{d \leq \sqrt{x/y}} \mu(d) \left\{ \frac{x}{d^2} + \mathcal{O}(1) \right\} + o_y(\sqrt{x})
\]

\[= \frac{6}{\pi^2} x - x \int_{\sqrt{x/y}}^{\infty} \frac{dM(t)}{t^2} + \mathcal{O} \left(\sqrt{\frac{x}{y}} \right) + o_y(\sqrt{x}).
\]

Für alle \(z \geq 1 \) haben wir aber

\[
\int_{z}^{\infty} \frac{dM(t)}{t^2} = -\frac{M(z^2)}{z} + 2 \int_{z}^{\infty} \frac{M(t)}{t^3} \, dt = o \left(\frac{1}{z} \right) + \int_{z}^{\infty} o \left(\frac{1}{t^2} \right) \, dt = o \left(\frac{1}{z} \right).
\]

Daher können wir schreiben, dass

\[Q(x) = \frac{6}{\pi^2} x + \mathcal{O} \left(\sqrt{\frac{x}{y}} \right) + o_y(\sqrt{x}), \]

derart, dass für jedes fixe \(y \geq 1 \) gilt

\[\limsup_{x \to \infty} \left| Q(x) - \frac{6x}{\pi^2} \right| / \sqrt{x} \ll 1 / \sqrt{y}. \]

Damit folgt der Satz indem wir \(y \) gegen unendlich gehen lassen. \(\square \)
Kapitel 4

Einige elementare Sätze über die Verteilung der Primzahlen

Wir wollen mit $\pi(x)$ die Anzahl der Primzahlen kleiner oder gleich x bezeichnen. Eine erste untere Schranke können wir aus dem Satz von Euklid gewinnen, der besagt, dass es unendlich viele Primzahlen gibt. Seien $p_1 = 2, p_2 = 3, p_3 = 5, \ldots, p_n$ die n kleinsten Primzahlen. Dann sagt der Beweis, dass die Primfaktoren von

$$N = 1 + \prod_{1 \leq j \leq n} p_j$$

alle völlig von p_1, p_2, \ldots, p_n verschieden sind. Damit erhalten wir, dass

$$p_{n+1} \leq 1 + \prod_{1 \leq j \leq n} p_j$$

ist. Mittels vollständiger Induktion können wir schließen, dass

$$p_n \leq 2^{2^n}.$$

Dadurch erhalten wir

Satz 4.1. Es gilt

$$\pi(x) > \frac{\ln \ln x}{\ln 2} - \frac{1}{2} \quad (x \geq 2).$$

Beweis. Mit der oberen Schranke für p_n erhalten wir für $\pi(x)$, dass

$$\pi(x) \geq \max \{ m \in \mathbb{N} : 2^{2^m} \leq x \} = \left\lfloor \frac{\ln(\ln x / \ln 2)}{\ln 2} \right\rfloor \geq \frac{\ln \ln x}{\ln 2} - \left(1 + \frac{\ln \ln 2}{\ln 2} \right).$$

Die untere Schranke im Satz 4.1 ist weit davon entfernt, optimal zu sein. Gauss hatte bereits vermutet, dass

$$\pi(x) \sim \frac{x}{\ln x} \quad (x \to \infty).$$

Dies ist der Primzahlsatz, der unabhängig voneinander von Jacques Hadamard und La Vallée-Poussin im Jahre 1896 bewiesen wurde. Ihre Methode verwendet Mittel aus der komplexen Analysis auf die wir im zweiten Teil näher eingehen werden. Es wurden auch immer “elementare” Beweise gesucht, wobei der erste Erdö und Selberg 1949 gelang. Daboussi, Newman, ...
4.1 Die Tschebyschow Ungleichungen

Der russische Mathematiker Pafnuti Lwowitsch Tschebyschow war einer der ersten der Abschätzungen für die Funktion $\pi(x)$ gefunden hat. Im Jahre 1852 hat er Bertrands Postulat bewiesen, das sagt, dass in jedem Intervall $[n, 2n]$ mit $n \geq 1$ gibt es zumindest eine Primzahl. Für dieses Resultat benötigte er explizite Schranken der Art, dass

$$\{c_1 + o(1)\} \frac{x}{\ln x} \leq \pi(x) \leq \{c_2 + o(1)\} \frac{x}{\ln x} \quad (x \to \infty),$$

wobei $c_1 = \ln(2^{1/2}3^{1/3}5^{1/5}30^{-1/30}) \approx 0,92129$ und $c_2 = \frac{6}{5}c_1 \approx 1,10555$ sind.

Wir wollen hier folgende Abschätzung beweisen, die leider nur eine schwächere Form von Bertrands Postulat beweist: für jedes $\varepsilon > 0$ gibt es ein $n_0 = n_0(\varepsilon)$ sodass jedes Intervall der Form $[n, (2 + \varepsilon)n]$ mit $n \geq n_0$ mindestens eine Primzahl enthält.

Satz 4.2. Für $n \geq 4$ gilt

$$\left(\ln 2\right) \frac{n}{\ln n} \leq \pi(n) \leq \left\{\ln 4 + \frac{8 \ln \ln n}{\ln n}\right\} \frac{n}{\ln n}.$$

Für die obere Schranke brauchen wir das folgende klassische Resultat.

Satz 4.3. Für $n \geq 1$ gilt

$$\prod_{p \leq n} p \leq 4^n.$$

Beweis. Wir verwenden Induktion nach n für den Beweis und starten mit $n \geq 3$. Wenn n gerade ist, dann ist n keine Primzahl und wir haben

$$\prod_{p \leq n} p = \prod_{p \leq n-1} p \leq 4^{n-1} < 4^n.$$

Wenn n ungerade ist, dann setzen wir $n = 2m + 1$. Das Argument basiert auf der Ganzheit der Binomialkoeffizienten der Ordnung n. Nachdem $\binom{2m+1}{m} = (2m+1)!/m!(m+1)!$ haben wir

$$\left(\prod_{m+1 < p \leq 2m+1} p\right) \mid \binom{2m+1}{m} \leq \frac{1}{2} 2^{2m+1} = 4^m,$$

wobei die letzte Ungleichung davon herrührt, dass der Koeffizient $\binom{2m+1}{m}$ gleich $\binom{2m+1}{m+1}$ ist und zweimal in der Entwicklung von $(1 + 1)^{2m+1}$ vorkommt. Wir können die Induktionshypothese auf $m + 1 < n$ anwenden und erhalten

$$\prod_{p \leq n} p = \prod_{p \leq m+1} p \prod_{m+1 < p \leq 2m+1} p \leq 4^{m+1}4^m = 4^n,$$

womit der Satz bewiesen ist.

Sei d_n das kleinste gemeinsame Vielfache von $\{1, 2, 3, \ldots, n\}$. Für die untere Schranke brauchen wir folgenden

Satz 4.4 (Nair). Für $n \geq 7$ gilt $d_n \geq 2^n$.

4.1. DIE TSCHEBYSCHOW UNGLEICHUNGEN

Beweis. Die Kernidee von Nair ist es, das folgende Integral zu betrachten:

\[I(m, n) = \int_{0}^{1} x^{m-1} (1-x)^{n-m} \, dx \quad (1 \leq m \leq n). \]

Auf der einen Seite erhalten wir durch die Entwicklung von \((1-x)^{n-m}\), dass \(I(m, n)\) eine rationale Nummer ist, deren Nenner \(d_n\) teilt.

\[I(m, n) = \sum_{0 \leq j \leq n-m} (-1)^j \binom{n-m}{j} \frac{1}{m+j} \in \frac{1}{d_n} \mathbb{Z}. \]

Auf der anderen Seite ist \(I(m, n)\) "klein". Genauer gesagt, können wir es direkt ausrechnen. Wir bemerken, dass für jedes \(0 \leq y \leq 1\) gilt, dass

\[\sum_{1 \leq m \leq n} \binom{n-1}{m-1} y^{m-1} I(m, n) = \int_{0}^{1} (1-x+xy)^{n-1} \, dx = \frac{1}{n} \sum_{1 \leq m \leq n} y^{m-1}. \]

Daher

\[I(m, n) = \frac{1}{n} \binom{n-1}{m-1} = \frac{1}{m} \binom{n}{m}, \quad (1 \leq m \leq n). \]

Das zeigt uns, dass \(m \binom{n}{m} \mid d_n\) für \(1 \leq m \leq n\) und somit

\[n \binom{2n}{n} \mid d_{2n} \mid d_{2n+1} \quad \text{und} \quad (n+1) \binom{2n+1}{n+1} = (n+1) \binom{2n+1}{n} = (2n+1) \binom{2n}{n} \mid d_{2n+1}. \]

Nachdem \(n\) und \(2n+1\) relativ prim sind, können wir folgern, dass

\[n(2n+1) \binom{2n}{n} \mid d_{2n+1}, \]

und schließlich, nachdem \(\binom{2n}{n}\) größer als die \((2n+1)\) binomial Koeffizienten, die in der Entwicklung von \((1+1)^{2n}\) vorkommen, ist,

\[d_{2n+1} \geq n4^n \quad (n \geq 1). \]

Daher erhalten wir, dass \(d_{2n+1} \geq 2 \cdot 4^n = 2^{2n+1} (n \geq 2)\) und \(d_{2n+2} \geq d_{2n+1} \geq 4^{n+1} (n \geq 4)\), woraus die Ungleichung \(d_n \geq 2^n\) für alle \(n \geq 9\) folgt. Wir können leicht händisch überprüfen, dass \(d_7 = 420\) und \(d_8 = 840\) auch die Ungleichung erfüllen.

Beweis von Satz 4.2. Für die obere Schranke verwenden wir Satz 4.3 und erhalten für alle \(1 < t \leq n\), dass

\[t^{\pi(n)-\pi(t)} \leq \prod_{t < p \leq n} p \leq 4^n. \]

Daher, bei Anwendung des Logarithmus,

\[\pi(n) \leq \frac{n \ln 4}{\ln t} + t. \]

Die gewünschte Schranke folgt durch die Wahl von \(t = n/(\ln n)^2\).
Für die untere Schranke verwenden wir die Methode von Nair. Es gilt
\[\pi(n) \geq (\ln d_n)/\ln n \quad (n \geq 2), \]
wobei \(d_n \) das kleinste gemeinsame Vielfache von \(\{1, 2, \ldots, n\} \) ist. In Wirklichkeit, wenn \(p^\nu || d_n \), dann gibt es ein \(m \leq n \), sodass \(p^\nu | m \). Daraus folgt, dass \(p^\nu \leq n \) und
\[d_n = \prod_{p \leq n, p^\nu || d_n} p^\nu \leq \prod_{p \leq n} n^{\pi(n)}. \]
Dies liefert uns die gewünschte Schranke nach einer Anwendung von Satz 4.4.

4.2 Erster Satz von Merthens

Für jede Primzahl \(p \) bezeichnen wir mit \(\nu_p \) die \(p \)-Bewertung, das heißt die arithmetische Funktion die jeder positiven ganzen Zahl \(n \) den Exponenten von \(p \) in der Primfaktorzerlegung zuordnet.

Satz 4.5. Für jede Primzahl \(p \) gilt
\[\nu_p(n!) = \sum_{k \geq 1} \left\lfloor \frac{n}{p^k} \right\rfloor (n \geq 1). \]

Bemerkung. Die Summe über \(k \) ist in Wirklichkeit endlich, denn der Term ist 0 für \(k > (\ln n)/\ln p \).

Beweis. Es gilt
\[\nu_p(n!) = \sum_{m \leq n} \nu_p(m) = \sum_{m \leq n} \sum_{1 \leq k \leq \nu_p(m)} 1 = \sum_{k \geq 1} \sum_{m \leq n, \nu_p(m) \geq k} 1. \]

Die letzte Summe entspricht der Anzahl der ganzen Zahlen \(m \leq n \) die durch \(p^k \) teilbar sind. Diese ist gerade \([n/p^k]\), was aber dem gewünschten entspricht.

Korollar 4.6. Für jede Primzahl \(p \) gilt
\[\frac{n}{p} - 1 < \nu_p(n!) \leq \frac{n}{p} + \frac{n}{p(p-1)} \quad (n \geq 1). \]

Beweis. Das ist eine unmittelbare Konsequenz aus Satz 4.5 und der Abschätzung \(x - 1 < [x] \leq x \).

Es gibt einige Funktionen im Zusammenhang mit Primzahlen, die eine viel einfacheren asymptotischen Entwicklung haben, als die Funktion \(\pi(x) \). Eines der Beispiele ist der folgende

Satz 4.7. Für \(x \geq 2 \) gilt
\[\sum_{p \leq x} \frac{\ln p}{p} = \ln x + O(1). \]

Darüber hinaus liegt der \(O(1) \)-Term im Intervall \([-1 - \ln 4, \ln 4[\).
Beweis. Wir werden auf zwei verschiedene Arten $\ln(n!)$ für $n = \lfloor x \rfloor$ abschätzen.
Auf der einen Seite haben wir im Korollar 3.3 gesehen, dass
\[
\ln(n!) = n \ln n - n + 1 + \vartheta_n \ln n
\]
mit $0 \leq \vartheta \leq 1$.
Auf der anderen Seite, wenn wir $n!$ in Primfaktoren zerlegen, erhalten wir
\[
\ln(n!) = \sum_{p \leq n} \nu_p(n!) \ln p,
\]
und mit Korollar 4.6 folgt
\[
\ln(n!) < n \sum_{p \leq n} \frac{\ln p}{p} + n \sum_{p \leq n} \frac{\ln p}{p(p-1)}
\]
und
\[
\ln(n!) > n \sum_{p \leq n} \frac{\ln p}{p} - \sum_{p \leq n} \ln p.
\]
Nach Satz 4.3 erhalten wir, dass die letzte summe in p nicht größer ist als $n \ln 4$. Wir haben also
\[
n \sum_{p \leq n} \frac{\ln p}{p} - n \ln 4 < n \ln n - n + (1 + \ln n) < n \ln n,
\]
woraus folgt, dass
\[
\sum_{p \leq x} \frac{\ln p}{p} = \sum_{p \leq n} \frac{\ln p}{p} \leq \ln n + \ln 4 \leq \ln x + \ln 4.
\]
Andererseits gilt
\[
\sum_{p \leq n} \frac{\ln p}{p(p-1)} < \sum_{m=2}^{\infty} \frac{\ln m}{m(m-1)}
\]
\[
\leq \sum_{r \geq 1} \sum_{2^r-1 \leq m \leq 2^r} \frac{r \ln 2}{m(m-1)} = \sum_{r \geq 1} \frac{r \ln 2}{2^r} = \ln 4,
\]
woraus folgt, dass
\[
n \sum_{p \leq n} \frac{\ln p}{p} + n \ln 4 > n \ln n - n + 1
\]
und schließlich
\[
\sum_{p \leq x} \frac{\ln p}{p} > \ln n + \frac{1}{n} - (1 + \ln 4) \geq \ln x - (1 + \ln 4).
\]
4.3 Zwei asymptotische Formeln

\[\sum_{p \leq x} \frac{1}{p} \text{ und } \prod_{p \leq x} \left(1 - \frac{1}{p}\right). \]

Satz 4.8. Sei \(c_0 := \sum_p \left\{ \ln \left(\frac{1}{1-1/p} \right) - \frac{1}{p} \right\} \approx 0,315718. \) Dann gilt für \(x \geq 2 \)

\[\sum_{p \leq x} \frac{1}{p} = \ln \left\{ \frac{1}{\prod_{p \leq x} \left(1 - \frac{1}{p}\right)} \right\} - c_0 + \frac{\vartheta}{2(x-1)}, \]

wobei \(\vartheta = \vartheta(x) \in]0,1[. \)

Beweis. Wir verwenden die Darstellung von \(c_0 \) und erhalten die gewünschte Formel mittels

\[
0 < \vartheta(x) = 2(x-1) \sum_{p>x} \left\{ \ln \left(\frac{1}{1-1/p} \right) - \frac{1}{p} \right\} \\
= 2(x-1) \sum_{p>x} \sum_{k \geq 2} \frac{1}{k} p^{-k} < \sum_{p>x} \frac{2(x-1)}{2p(p-1)} < \sum_{n>x} \frac{x-1}{n(n-1)} = \frac{x-1}{N-1},
\]

wobei \(N \) die kleinste ganze Zahl > \(x \) ist. \(\square \)

Satz 4.9. Es gibt eine Konstante \(c_1 \), sodass für \(x \geq 2 \)

\[\sum_{p \leq x} \frac{1}{p} = \ln \ln x + c_1 + O \left(\frac{1}{\ln x} \right). \]

Bemerkung. Mittels Satz 4.11 erhalten wir für die Konstante, dass \(c_1 = \gamma - c_0 \approx 0,261497. \)

Beweis. Nach dem ersten Satz von Mertens gilt für \(t \geq 2 \)

\[R(t) := \sum_{p \leq t} \frac{\ln p}{p} - \ln t = O(1). \]

Damit folgt, dass

\[
\sum_{p \leq x} \frac{1}{p} = \int_{2^2}^x \frac{1}{\ln t} \left\{ \sum_{p \leq t} \frac{\ln p}{p} \right\} = \int_{2^2}^x \frac{dt}{t \ln t} + \int_{2^2}^x \frac{dR(t)}{\ln t} \\
= \ln \ln x - \ln \ln 2 + \frac{R(x)}{\ln x} - \frac{R(2^-)}{\ln 2} + \int_{2^2}^x \frac{R(t)}{t(\ln t)^2} dt,
\]

wobei wir das Integral mit \(R(t) \) mittels partielle Integration (Abelscher Summation) behandelt haben.
Sei $R := \sup_{t \geq 2} |R(t)|$. Es gilt

\[
\left| \frac{R(x)}{\ln x} - \int_x^\infty \frac{R(t)}{t(ln t)^2} dt \right| \leq \frac{2R}{\ln x} < \frac{2(1 + \ln 4)}{\ln x}
\]
dank der oberen Schranke aus Satz 4.7. Wir erhalten die gewünschte Formel mit

\[
c_1 = -\ln \ln 2 + 1 + \int_2^\infty \frac{R(t)}{t(ln t)^2} dt.
\]

Satz 4.10. Die Konstanten c_0 und c_1 haben den in Satz 4.8 und 4.9 eingeführten Wert. Dann gilt für $x \geq 2$

\[
\prod_{p \leq x} \left(1 - \frac{1}{p}\right) = e^{-c_0} \frac{1}{\ln x} \left\{ 1 + (1) \right\}.
\]

4.4 Mertens Formel

Der zweite Satz von Mertens wird oft als Mertens Formel bezeichnet.

Satz 4.11. Mit den Notationen von oben erhalten wir $c_0 + c_1 = \gamma$, wobei γ die Euler-Mascheroni-constante ist. Also

\[
\prod_{p \leq x} \left(1 - \frac{1}{p}\right) = e^{-\gamma} \frac{1}{\ln x} \left\{ 1 + (1) \right\}.
\]

Beweis. Für $\sigma > 0$ setzen wir

\[
\zeta(\sigma) := \sum_{n \geq 1} \frac{1}{n^\sigma}.
\]

Indem wir die Summe und das Integral vergleichen erhalten wir

\[
\zeta(1 + \sigma) = \frac{1}{\sigma} + O(1) \quad (\sigma > 0).
\]

Außerdem gilt

\[
\sum_{n \leq x} \frac{1}{n^{1+\sigma}} \leq \prod_{p \leq x} \left(1 - \frac{1}{p^{1+\sigma}}\right)^{-1} \leq \zeta(1 + \sigma),
\]
denn das Produkt über p ist gleich der Summe $\sum_{n \geq 1} \varepsilon_n/n^{1+\sigma}$, wobei ε_n gleich 1 ist, wenn alle Primfaktoren $\leq x$ sind, und sonst 0. Wenn wir x gegen unendlich gehen lassen, erhalten wir

\[
\zeta(1 + \sigma) = \prod_p \left(1 - \frac{1}{p^{1+\sigma}}\right)^{-1}.
\]

Nun betrachten wir die Funktion

\[
f(\sigma) = \ln \zeta(1 + \sigma) - \sum_p \frac{1}{p^{1+\sigma}} = \sum_p \left\{ \ln \left(\frac{1}{1 - p^{-1-\sigma}} \right) - \frac{1}{p^{1+\sigma}} \right\}.
\]
Nachdem der Hauptterm positiv ist und durch 1/p(p − 1) beschränkt ist, ist die Reihe f(σ) gleichmäßig konvergent für σ ≥ 0; vor allem ist sie stetig in 0 und daher
\[\lim_{\sigma \to 0} f(\sigma) = f(0) = c_0. \]
Wir werden nun die zwei Terme der Summe f(σ) transformieren. Auf der einen Seite gilt
\[\ln \zeta(1 + \sigma) = \ln \{1/\sigma + O(1)\} = \ln(1/\sigma) + O(\sigma) = \ln \left(\frac{1}{1 - e^{-\sigma}} \right) + O(\sigma) = \sum_{n \geq 1} e^{-\sigma n} n^{-1} + O(\sigma) = \int_0^\infty e^{-\sigma t} dH(t) + O(\sigma), \]
wobei wir
\[H(t) := \sum_{1 \leq n \leq t} \frac{1}{n} \]
gesetzt haben. Partielle Integration liefert uns nun, dass
\[\ln \zeta(1 + \sigma) = \sigma \int_1^\infty e^{-\sigma t} H(t) \, dt + O(\sigma) \]
ist. Andererseits, wenn wir \(P(u) := \sum_{p \leq u} 1/p \) setzen, erhalten wir
\[\sum_{p \leq u} \frac{1}{p^{1+\sigma}} = \int_1^\infty \frac{dP(u)}{u^\sigma} = \sigma \int_1^\infty \frac{P(u)}{u^{1+\sigma}} \, du = \sigma \int_0^\infty e^{-\sigma t} P(e^t) \, dt. \]
Wir erhalten also, dass
\[f(\sigma) = \sigma \int_0^\infty e^{-\sigma t} (H(t) - P(e^t)) \, dt + O(\sigma). \]
Mit Satz 3.6 erhalten wir, dass
\[H(t) = \ln t + \gamma + O(1/t) \quad (t \geq 1), \]
und mit Satz 4.9, dass
\[P(e^t) = \ln t + c_1 + O(1/t) \quad (t \geq 1). \]
Es folgt für \(0 < \sigma \leq \frac{1}{2} \), dass
\[f(\sigma) = \sigma \int_0^\infty \left\{ \gamma - c_1 + O\left(\frac{1}{t+1} \right) \right\} e^{-\sigma t} \, dt + O(\sigma) \]
\[= \gamma - c_1 + O\left(\sigma \int_0^\infty \frac{e^{-\sigma t} \, dt}{t+1} \right) = \gamma - c_1 + O(\sigma \ln(1/\sigma)) \]
und schließlich, dass \(c_0 = f(0) = \gamma - c_1. \)
4.5 Ein weiterer Satz von Tschebyschow

Tschebyschow hat gezeigt, dass, wenn wir $\pi(x) \sim cx/\ln x$ haben, dann muss $c = 1$ sein.

Satz 4.12. Es gilt

$$\liminf_{x \to \infty} \frac{\pi(x)}{x/\ln x} \leq 1 \leq \limsup_{x \to \infty} \frac{\pi(x)}{x/\ln x}.$$

Beweis. Die beiden Ungleichungen werden auf die selbe Art und Weise behandelt. Daher zeigen wir nur die linke. Sei

$$\ell := \liminf_{x \to \infty} \frac{\pi(x)}{x/\ln x}.$$

Für jedes $\varepsilon > 0$, gibt es ein $x_0 = x_0(\varepsilon) \geq 2$, sodass

$$\pi(t) \geq (\ell - \varepsilon) \frac{t}{\ln t}, \quad (t \geq x_0(\varepsilon)).$$

Das bedeutet für $x > x_0$, dass

$$\sum_{p \leq x} \frac{1}{p} \geq \int_{x_0}^{x} \frac{d\pi(t)}{t} = \frac{\pi(x)}{x} - \frac{\pi(x_0)}{x_0} + \int_{x_0}^{x} \frac{\pi(t)}{t} \frac{t^{-2} dt}{\ln t}$$

$$\geq -1 + (\ell - \varepsilon) \int_{x_0}^{x} \frac{dt}{t \ln t} \geq (\ell - \varepsilon) \ln \ln x + O(1).$$

Mit Satz 4.9 folgt, dass $\ell - \varepsilon \leq 1$ und daher $\ell \leq 1$, weil wir ε beliebig klein wählen können.

4.6 Die Funktionen ω and Ω

Satz 4.13. Für x gegen unendlich gilt

$$\sum_{n \leq x} \omega(n) = x \ln \ln x + c_1 x + O \left(\frac{x}{\ln x} \right),$$

wobei $c_1 \approx 0, 261497$ die Konstante aus Satz 4.9 ist.

Beweis. Es gilt

$$\sum_{n \leq x} \omega(n) = \sum_{n \leq x} \sum_{p | n} 1 = \sum_{p \leq x} \left\lfloor \frac{x}{p} \right\rfloor = x \sum_{p \leq x} \frac{1}{p} + O(\pi(x)).$$

Die Formel folgt nun aus Satz 4.9 und der oberen Abschätzung von Tschebischow in Satz 4.2.

Der Fall der Funktion $\Omega(n)$ ist ähnlich, aber etwas delikater.

Satz 4.14. Für x gegen unendlich gilt

$$\sum_{n \geq x} \Omega(n) = x \ln \ln x + c_2 x + O \left(\frac{x}{\ln x} \right)$$

mit

$$c_2 = c_1 - \sum_{p} \frac{1}{p(p - 1)} \approx 1, 034653.$$
KAPITEL 4. EINIGE ELEMENTARE SÄTZE ÜBER DIE VERTEILUNG DER PRIMZAHLEN

Beweis. Es gilt

\[A(x) := \sum_{n \leq x} \{\Omega(n) - \omega(n)\} = \sum_{p} \sum_{\nu \geq 2} \left[\frac{x}{p^\nu} \right]. \]

Daraus folgt einerseits, dass

\[A(x) \leq x \sum_{p} \sum_{\nu \geq 2} \frac{1}{p^\nu} = x \sum_{p} \frac{1}{p(p-1)}, \]

und andererseits, dass

\[A(x) \geq \sum_{p \leq \sqrt{x}} \sum_{2 \leq \nu \leq \ln x / \ln p} \left(\frac{x}{p^\nu} - 1 \right) = \sum_{p \leq \sqrt{x}} \left\{ \frac{x}{p(p-1)} + O \left(\frac{\ln x}{\ln p} \right) \right\} \]

\[= x \sum_{p} \frac{1}{p(p-1)} + O(\sqrt{x}), \]

mittels Satz 4.2. Es gilt also

\[A(x) = x(c_2 - c_1) + O(\sqrt{x}). \]

\[\square \]

4.7 Die von Mangoldt Funktion

Die von Mangoldt Funktion \(\Lambda \) ist die arithmetische Funktion definiert als

\[\Lambda := \mu \ast \ln. \]

Für jedes \(n \geq 1 \) können wir

\[\Lambda(n) = \sum_{d|n} \mu(d) \ln(n/d) = \delta(n) \ln n - \sum_{d|n} \mu(d) \ln d = - \sum_{d|n} \mu(d) \ln(d) \]

schreiben. Das heißt,

\[\Lambda = -\mu \ln * 1. \tag{4.1} \]

Darüber hinaus, bekommen wir für jedes Paar \(m, n \) mit \((m, n) = 1 \), dass

\[\Lambda(mn) = - \sum_{d|m} \sum_{t|n} \mu(dt) \ln(dt) = - \sum_{d|m} \mu(d) \sum_{t|n} \mu(t) \{ \ln d + \ln t \} \]

\[= \sum_{d|m} \mu(d) \{ -\delta(n) \ln d + \Lambda(n) \} = \delta(n)\Lambda(m) + \delta(m)\Lambda(n). \]

Daraus folgt, dass \(\Lambda(n) \) gleich 0 ist, solange \(n \) nicht eine Primzahlpotenz ist. Mit (4.1) folgt, dass

\[\Lambda(n) = \begin{cases} \ln p & (n = p^\nu, \nu \geq 1), \\ 0 & (n \neq p^\nu). \end{cases} \tag{4.2} \]
Die summatorischen Funktionen von Tschebyschow

\[\psi(x) := \sum_{n\leq x} \Lambda(n) \]
\[\vartheta(x) := \sum_{p\leq x} \ln p, \]
spielen eine große Rolle in der analytischen Theorie der Primzahlen. Es gilt

\[\psi(x) = \ln(ggT\{n: n \leq x\}) \geq \lfloor x \rfloor \ln 2 \quad (x \geq 7) \quad (4.3) \]

und

\[\vartheta(x) \leq x \ln 4 \quad (x \geq 2). \quad (4.4) \]

Diese Ungleichungen ergeben sich direkt aus den Sätzen 4.4 und 4.3. Von (4.2) können wir direkt ableiten, dass

\[\psi(x) = \sum_{k \geq 1} \vartheta(x^{\frac{1}{k}}) \quad (x \geq 1). \quad (4.5) \]

Diese Summe ist nur scheinbar unendlich, denn ab \(2^k > x \) ist der Hauptterm 0.

Satz 4.15. Für \(x \geq 2 \) gilt

\[\psi(x) = \vartheta(x) + O(\sqrt{x}), \]
\[\pi(x) = \vartheta(x) + O\left(\frac{x}{(\ln x)^2}\right). \]

Beweis. Die erste Gleichung ergibt sich aus (4.4) und (4.5). Für die zweite Gleichung, verwenden wir Abelsche Summation:

\[\vartheta(x) = \int_1^x \ln t \, \pi(t) \, dt = \pi(x) \ln x - \int_1^x \frac{\pi(t)}{t} \, dt. \]
Nach der oberen Abschätzung von Tschebyschow (Satz 4.2), ist das Integral ein \(O(x/\ln x) \), womit die Gleichung folgt.

Korollar 4.16. Seien \(\alpha \) und \(\beta \) zwei konstanten, sodass \(0 < \alpha < \ln 2 \) und \(\beta > \ln 4 \). Für genügend großes \(x \) gilt

\[\alpha x \leq \vartheta(x) \leq \psi(x) \leq \beta x. \]

Beweis. Das folgt unmittelbar aus Satz 4.15 und Satz 4.2.

4.8 Mittelwert der Möbiusfunktion und die Summatorische Funktion von Tschebyschow

Wir haben oben gesehen, dass \(\Lambda = \mu \ast \ln \) ist. Dieses \(\Lambda \) besitzt eine summatorische Funktion \(\psi(x) \) welche mit der Primzahlfunktion \(\pi(x) \) mittels der Gleichung

\[\psi(x) \sim \pi(x) \ln(x) \quad (x \to \infty) \]
verbunden ist. Es stellt sich also die Frage, ob nicht auch die summatorische Funktion der Möbius-Funktion eine einfache Interpretation mittels den summatorischen Tschebyschow Funktionen \(\pi(x) \), \(\vartheta(x) \) und \(\psi(x) \) besitzt. Folgender Satz von Landau (1909) gibt eine vollständige Antwort.

Satz 4.17. Die folgenden drei Aussagen sind äquivalent:

(i) \(\psi(x) \sim x \quad (x \to \infty) \),

(ii) \(M(x) := \sum_{n \leq x} \mu(n) = o(x) \), \((x \to \infty) \),

(iii) \(\sum_{n \geq 1} \mu(n)/n = 0 \).

Bemerkung. Gleichung (iii) bedeutet, dass die Reihe auf der linken Seite konvergiert und ihre Summe 0 ist.

* Beweis. Wir beginnen damit, dass (iii) \(\Rightarrow \) (ii). Dazu verwenden wir Abelsche Summation. Nehmen wir an, dass

\[
m(x) := \sum_{n \leq x} \frac{\mu(n)}{n} = o(1) \quad (x \to \infty),
\]

dann folgt, dass

\[
M(x) = \int_1^x t \text{d}m(t) = x m(t) - \int_1^x m(t) \text{d}t = o(x).
\]

Die Implikation (ii) \(\Rightarrow \) (i) zeigen wir, indem wir die Funktion \(\Lambda - 1 \) betrachten. Wir haben

\[
\Lambda - 1 = (\ln -\tau) * \mu = (\ln -\tau + 2\gamma 1) * \mu - 2\gamma \delta = f * \mu - 2\gamma \delta,
\]

wobei \(f \) eine Funktion ist, für die

\[
F(x) := \sum_{n \leq x} f(n) = O(\sqrt{x}) \quad (4.6)
\]

gilt mit Satz 3.8 und Korollar 3.3 für \(\sum_{n \leq x} \ln n \).

Wir werden nun zeigen, dass

\[
H(x) := \sum_{n \leq x} f * \mu(n) = o(x) \quad (4.7)
\]

indem wir das Hyperbelprinzip auf (4.6) anwenden. Für jedes fixe \(y > 2 \) erhalten wir dank Satz 3.7 dass

\[
H(x) = \sum_{n \leq x/y} \mu(n) F(x/n) + \sum_{m \leq y} f(m) M(x/m) - F(y) M(x/y).
\]

Unter der Voraussetzung (ii) erhalten wir nun

\[
\limsup_{x \to \infty} \left| \frac{H(x)}{x} \right| \leq \limsup_{x \to \infty} \frac{1}{x} \sum_{n \leq x/y} \left| F\left(\frac{x}{n} \right) \right| \ll \limsup_{x \to \infty} \frac{1}{x} \sum_{n \leq x/y} \sqrt{\frac{x}{n}} \ll \frac{1}{\sqrt{y}}.
\]
Nachdem y beliebig war, folgt in jedem Fall (4.7).
Es bleibt uns zu zeigen, dass $(i) \Rightarrow (iii)$. Wir bemerken zu allererst, dass die Konvolution $\mu * 1 = \delta$ uns folgende Gleichung liefert

$$1 = \sum_{n \leq x} \mu(n) \lfloor x/n \rfloor = xm(x) + O(x),$$

wobei

$$m(x) = O(1)$$

ist. Dieselbe Gleichung impliziert auch

$$\sum_{md=n} \mu(m) \frac{m}{d} = \delta(n),$$

wobei

$$\sum_{m \leq x} \frac{\mu(m)}{m} \sum_{d \leq x/m} \frac{1}{d} = 1 \quad (x \geq 1).$$

Wir berechnen die innere Summe mittels Satz 3.6 und erhalten

$$1 = \sum_{m \leq x} \frac{\mu(m)}{m} \left\{ \ln \left(\frac{x}{m} \right) + \gamma + O \left(\frac{m}{x} \right) \right\} = m(x)(\ln x + \gamma) - G(x) + O(1),$$

wobei wir

$$G(x) := \sum_{m \leq x} \frac{\mu(m) \ln m}{m}$$

gesetzt haben. Es reicht uns also zu zeigen, dass

$$G(x) = o(\ln x) \quad (x \to \infty). \quad (4.8)$$

Dafür benutzen wir die folgende Konvolution :

$$\mu \ln = -\Lambda * \mu = (1 - \Lambda) * \mu = \delta.$$

Es genügt, den Fall $x \neq N$ zu betrachten. Wir könne also schreiben

$$G(x) = \sum_{j,k \leq x} \left(\frac{1 - \Lambda(j)}{j} \right) \frac{\mu(k)}{k} - 1 = -1 + \int_{1}^{x} \frac{m(x/t)}{t} dR(t),$$

wobei wir

$$R(t) := |t| - \psi(t) \quad (t \geq 1)$$

gesetzt haben. Mittels Voraussetzung erhalten wir

$$R(t) = o(t) \quad (t \to \infty).$$

Eine Abelsche Summation gibt uns

$$G(x) = -1 + \int_{1}^{x} t^{-2} m(x/t) R(t) dt - \int_{1}^{x} t^{-1} R(t) dm(x/t)$$

$$= O(1) + \int_{1}^{x} o(1/t) dt - \int_{1}^{x} o(1) |dm(x/t)|.$$
Das erste Integral ist $o(\ln x)$. Mittels der folgenden Ungleichung zwischen Stieltjes-Maßen

$$|dm(y)| \leq d \left\{ \sum_{n \leq y} \frac{1}{n} \right\}$$

erhalten wir, dass dies auch für das zweite gilt. Zusammen mit (4.8) erhalten wir schließlich (iii).

Korollar 4.18. Die folgenden Aussagen sind elementar äquivalent zu denen aus Satz 4.17:

- (iv) $\pi(x) \sim x \ln x$ für $x \to \infty$,
- (v) $\vartheta(x) \sim x$ für $x \to \infty$,
- (vi) $\sum_{n \leq x} \frac{\Lambda(n)}{n} = \ln x - \gamma + o(1)$ für $x \to \infty$.

Beweis. Die Fälle (iv) und (v) folgen unmittelbar aus Satz 4.15. Die Implikation (vi) \Rightarrow (i) folgt mit einer Abelschen Summation und wird dem Leser als Übung überlassen. Für die umgekehrte Implikation nützen wir wiederum die Funktion $f = \ln -\tau + 2\gamma 1$, die wir im Beweis von Satz 4.17 eingeführt haben. Wir haben

$$\sum_{n \leq x} \frac{\Lambda(n)}{n} - 1 = \sum_{kd \leq x} \frac{f(k) \mu(d)}{k} \frac{x}{d} - 2\gamma$$

$$= \sum_{d \leq y} \frac{\mu(d)}{d} E \left(\frac{x}{d} \right) + \sum_{k \leq y} \frac{f(k)}{k} m \left(\frac{x}{k} \right) - E(y) m \left(\frac{x}{y} \right) - 2\gamma, \quad (4.9)$$

wobei

$$E(z) := \sum_{k \leq z} f(k)/k = O(1/\sqrt{z}) \quad (z \geq 1).$$

Diese letzte Gleichung liefert, mit einer passenden Konstante C, mittels Abelscher Summation die Abschätzung. Wenn wir nun x und dann y gegen unendlich laufen lassen, bekommen wir, wie oben dank (iii), dass (4.9) uns $-2\gamma + o(1)$ liefert, woraus die gewünschte Beziehung folgt.
Teil II

Methoden der komplexen Analysis
In der analytischen Zahlentheorie definiert man Funktionen, die die gewünschten Objekte
beschreiben und analysiert diese. Zu den Objekten gehören zum Beispiel die erzeugenden
Funktionen. Ein klassisches Beispiel ist die erzeugende Funktion der Partitionen. Unter einer
Partition einer ganzen Zahl versteht man die Darstellung derselben als Summe von ganzen
Zahlen. Man kann zum Beispiel die Zahl 6 wie folgt darstellen:

\[
\begin{align*}
5 &= 5 \\
 &= 4 + 1 \\
 &= 3 + 2 \\
 &= 3 + 1 + 1 \\
 &= 2 + 2 + 1 \\
 &= 2 + 1 + 1 + 1 \\
 &= 1 + 1 + 1 + 1 + 1.
\end{align*}
\]

Sei also \(p(n) \) die Anzahl der Darstellungen der Zahl \(n \) als Summe von ganzen Zahlen, so haben wir \(p(5) = 7 \). Auf dieselbe Weise erhalten wir:

\[
\begin{array}{c|ccccccccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
p(n) & 1 & 1 & 2 & 3 & 5 & 7 & 11 & 15 & 22 & 30 & 42 & 56 & 77 \\
\end{array}
\]

Bei dieser Folge handelt es sich um die Folge A000041 in der OEIS.

Eine Möglichkeit, um nun eine Asymptotik zu erhalten, ist die erzeugende Funktion der
Partitionsfunktion. Wir erhalten

\[
P(z) = \sum_{n \geq 0} p(n) z^n = \prod_{n \geq 0} (1 - z^n)^{-1}.
\]

Um die Koeffizienten zu extrahieren benutzt man die Cauchy’sche Integralformel (also kom-
plesse Analysis):

\[
p(n) = [z^n] P(z) = \frac{1}{2\pi i} \int_{|z|=r} P(z) \frac{dz}{z^{n+1}}.
\]

Es folgt eine Anwendung der Sattelpunktsmethode. Diese ist aber außerhalb der Ziele des
aktuellen Kurses und wir verweisen den interessierten Leser auf “Modular Functions and
Dirichlet Series in Number Theory” von Tom M. Apostol.

In diesem Kurs möchten wir uns mit der Gamma Funktion, der Riemann’schen Zetafunktion
und der Primzahlfunktion beschäftigen.
Kapitel 5

Die Gamma Funktion

5.1 Definitionen

Die ursprüngliche Definition der Gamma Funktion geht auf einen Brief von Euler an Goldbach aus dem Jahre 1729 zurück:

\[\Gamma(s) := \frac{1}{s} \prod_{n \geq 1} \frac{(1 + 1/n)^s}{1 + s/n} \quad (s \neq 0, -1, -2, \ldots). \]

Es ist leicht zu sehen, dass das Produkt auf \(\mathbb{C} \setminus (-\mathbb{N}^*) \) gleichmäßig konvergiert und somit ist damit eine meromorphe Funktion auf ganz \(\mathbb{C} \) definiert.

Euler hat daraus folgende Integralformel abgeleitet:

\[\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} \, dt \quad (\sigma > 0). \]

Diese Formel kann auch als Mellin Transformierte der Exponentialfunktion gelesen werden. Hier und im folgenden bezeichnen wir den Real- und Imaginärteil einer komplexen Variable \(s \) mit

\[s = \sigma + i\tau. \]

Satz 5.1 (Euler). Sei

\[\Gamma_n(s) := \int_0^n \left(1 - \frac{t}{n} \right)^n t^{s-1} \, dt \quad (\sigma > 0). \]

Dann gilt

\[\Gamma_n(s) = \frac{n^s n!}{s(s+1) \cdots (s+n)}, \quad (5.1) \]

und

\[\Gamma(s) = \lim_{n \to \infty} \Gamma_n(s) = \int_0^\infty t^{s-1} e^{-t} \, dt \quad (\sigma > 0). \]

Beweis. Der Variablentausch \(u = t/n \) erlaubt es uns,

\[\Gamma_n(s) = n^s \int_0^1 (1 - u)^n u^{s-1} \, du \]
zu schreiben. Wir berechnen nun dieses Integral mittels partieller Integration und erhalten
\[
\int_0^1 (1-u)^n u^{s-1} \, du = \left[\frac{u^s(1-u)^n}{s} \right]_0^1 + \frac{n}{s} \int_0^1 (1-u)^{n-1} u^s \, du = \cdots = \frac{n!}{s(s+1) \cdots (s+n-1)} \int_0^1 u^{s+n-1} \, du
\]
Wir schließen daraus einerseits, dass
\[
\Gamma_n(s) = \frac{n^s n!}{s(s+1) \cdots (s+n)} = \frac{1}{s} (1 + \frac{1}{n})^{-s} \prod_{1 \leq j \leq n} \frac{(1 + 1/j)^s}{1 + s/j}
\]
und andererseits, dass
\[
\lim_{n \to \infty} \Gamma_n(s) = \int_0^\infty t^{s-1}e^{-t} \, dt.
\]
Diese letzte Formel ergibt sich elementar und wir überspringen die Details.

Wir haben die folgende Funktionalgleichung für die Γ-Funktion. Diese Gleichung spiegelt auch die meromorphe Fortsetzung von Γ wider.

Satz 5.2. Es gilt
\[
\Gamma(s+1) = s\Gamma(s) \quad (\sigma > 0).
\]

Beweis.
\[
\Gamma(s+1) = \int_0^\infty t^s e^{-t} \, dt = \int_0^\infty \left[-e^{-t}s\right]_0^\infty + s \int_0^\infty t^{s-1}e^{-t} \, dt = s\Gamma(s)
\]

Korollar 5.3. Für \(n \in \mathbb{N} \) gilt \(\Gamma(n+1) = n! \).

Satz 5.4. Die Funktion \(\Gamma \) ist logarithmisch konvex.

Beweis. Es genügt die Cauchy-Schwarz-Ungleichung:
\[
\Gamma'(x)^2 = \left(\int_0^\infty e^{-u} \ln u u^{x-1} \, du \right)^2 \leq \Gamma(x)\Gamma''(x).
\]

Emil Artin (1898-1962) hat gezeigt, dass die Funktionalgleichung und die logarithmische Konvexität die Γ-Funktion charakterisiert.

Satz 5.5 (Artin). Sei \(\Phi : [0, \infty] \to [0, \infty] \) eine differenzierbare Funktion sodass, \(\ln \Phi \) konvexe ist und \(x\Phi(x) = \Phi(x+1) \) für all \(x > 0 \) gilt. Dann ist \(\Phi(x) = \Phi(1)\Gamma(x) \) für alle \(x > 0 \).
5.2. DIE PRODUKTFORMEL VON WEIERSTRASS

Beweis. Sei \(H := \Phi / \Gamma \). Dann ist \(H \) 1-periodisch und \(H(1) = \Phi(1) \). Nachdem \(\Phi'/\Phi \) und \(\Gamma'/\Gamma \) monoton wachsend sind, gilt für \(x \geq 0 \) und \(n \geq 1 \), dass

\[
\frac{\Phi'(n)}{\Phi(n)} - \frac{\Gamma'(n+1)}{\Gamma(n+1)} \leq \frac{H'(n+x)}{H(n+x)} = \frac{\Phi'(n+x)}{\Phi(n+x)} - \frac{\Gamma'(n+x)}{\Gamma(n+x)} \leq \frac{\Phi'(n+1)}{\Phi(n+1)} - \frac{\Gamma'(n)}{\Gamma(n)}.
\]

Aber \(\Phi \) und \(\Gamma \) erfüllen beide die Funktionalgleichung

\[f'(x+1) f(x) = f'(x) f(x) + 1 \]

Also gilt

\[
\frac{\Phi'(n)}{\Phi(n)} - \frac{\Gamma'(n+1)}{\Gamma(n+1)} = \frac{H'(n)}{H(n)} - \frac{1}{n} \cdot \frac{\Phi'(n+1)}{\Phi(n+1)} - \frac{\Gamma'(n)}{\Gamma(n)} = \frac{H'(n)}{H(n)} + \frac{1}{n}.
\]

Damit folgt, dass

\[
\frac{H'(1)}{H(1)} - \frac{1}{n} = \frac{H'(n)}{H(n)} - \frac{1}{n} \leq \frac{H'(n)}{H(n)} + \frac{1}{n} = \frac{H'(1)}{H(1)} + \frac{1}{n}.
\]

Indem wir \(n \) gegen unendlich gehen lassen, bekommen wir die Existenz einer Konstante \(k \), sodass \(H'(x)/H(x) = k \) für alle \(x > 0 \), womit \(H(x) = H(1)e^{kx} \) folgt. Nachdem \(H \) periodisch ist, muss \(k = 0 \) sein.

5.2 Die Produktformel von Weierstraß

Satz 5.6 (Weierstraß). Für \(\sigma > 0 \) gilt

\[
\frac{1}{\Gamma(s)} = s e^{\gamma s} \prod_{j \geq 1} \left(1 + \frac{s}{j} \right) e^{-s/j}, \quad (5.2)
\]

wobei \(\gamma \) die Euler-Mascheroni-Konstante bezeichnet.

Darüber hinaus beschreibt (5.2) eine analytische Fortsetzung von \(1/\Gamma(s) \) auf eine ganze Funktion.

Beweis. Für \(n \geq 1 \) setzen wir \(H_n := \sum_{1 \leq j \leq n} 1/j \) die \(n \)-te harmonische Zahl und erhalten:

\[H_n = \ln n + \gamma + o(1) \quad (n \to \infty). \]

Nach (5.1) gilt

\[
\Gamma_n(s) = \frac{n^s}{s} \prod_{1 \leq j \leq n} \frac{e^{s/j} e^{-s/j}}{1 + s/j} = e^{s(\ln n - H_n)} \prod_{1 \leq j \leq n} \frac{e^{s/j}}{1 + s/j}.
\]

Indem wir \(n \) gegen unendlich gehen lassen, können wir das gewünschte folgern, denn der Hauptterm des Produkts ist \(1 + O(1/j^2) \) gleichmäßig auf dem Kompaktum \(\mathbb{C} \setminus (-\mathbb{N}) \).

Korollar 5.7. Es gilt \(\gamma = -\Gamma'(1) \).

Beweis. Logarithmische Ableitung der Formel (5.2) liefert

\[
\frac{-\Gamma'(s)}{\Gamma(s)} = \gamma + \frac{1}{s} + \sum_{j \geq 1} \frac{1}{s + j} - \frac{1}{j}.
\]

Für \(s = 1 \) ist die Reihe eine Teleskopsumme und gleich \(-1 \).
5.3 Beta-Funktion

Die Beta-Funktion oder Euler-Integral der zweiten Art ist definiert als

\[B(x, y) := \int_0^1 t^{x-1}(1 - t)^{y-1} \, dt \quad (x > 0, y > 0). \]

Satz 5.8. Es gilt

\[B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} \quad (x > 0, y > 0). \]

(5.3)

Erster Beweis: Variablentausch. Es gilt

\[\Gamma(x)\Gamma(y) = \int_0^\infty t^{x-1}e^{-t} \, dt \int_0^\infty u^{y-1}e^{-u} \, du. \]

Mit dem Variablentausch \(u = tv \) und dem Satz von Fubini erhalten wir,

\[
\begin{align*}
\Gamma(x)\Gamma(y) &= \int_0^\infty t^{x-1}e^{-t} \, dt \int_0^\infty (tv)^{y-1}e^{-(tv+1)t} \, dv \\
&= \int_0^\infty t^{x+y-1}e^{-tv} \, dt \\
&= \int_0^\infty \frac{v^{y-1}}{(1+v)^x+y} \Gamma(x+y) \, dv \\
&= \Gamma(x+y) \int_0^\infty \left(\frac{v}{1+v} \right)^{y-1} \left(\frac{1}{1+v} \right)^{x-1} \frac{dv}{(1+v)^2} \\
&= \Gamma(x+y) \int_0^1 w^{y-1} (1-w)^{x-1} \, dw \\
&= \Gamma(x+y) B(x, y).
\end{align*}
\]

\[\square \]

Zweiter Beweis mit dem Satz von Artin. Sei \(y > 0 \) fix und \(f(x) := \frac{\Gamma(x+y)B(x,y)}{\Gamma(y)} \). Wir müssen zeigen, dass \(f(x) = \Gamma(x) \) ist. Es gilt \(f(1) = yB(1,y) = 1 \) und

\[f(x+1) = \frac{(x+y)\Gamma(x+y)}{\Gamma(y)} B(x+1, y). \]

Nachdem

\[
\begin{align*}
B(x+1, y) &= \int_0^1 t^x(1-t)^{y-1} \, dt = \int_0^1 \left(\frac{t}{1-t} \right)^x (1-t)^{x+y-1} \, dt \\
&= \left[\frac{(1-t)^x}{-x} \right]_0^1 + \frac{x}{x+y} \int_0^1 (1-t)^{x+y} \left(\frac{t}{1-t} \right)^x \frac{dt}{(1-t)^2} \\
&= \frac{x}{x+y} B(x, y),
\end{align*}
\]

woraus wir ableiten, dass

\[f(x+1) = x f(x). \]
ist. Schließlich liefert uns die Hölder-Ungleichung, für $1/p + 1/q = 1$, dass
\[
B(x/p + z/q, y) = \int_0^1 t^{(x-1)/p + (z-1)/q}(1 - t)^{(y-1)/p + (y-1)/q}dt
= B(x, y)^{1/p}B(z, y)^{1/q},
\]
woaus wir schließen, dass $x \mapsto B(x, y)$, und damit auch $x \mapsto f(x)$, log-konvex ist. Der Satz von Artin (Satz 5.5) zeigt nun, dass $f(x) = \Gamma(x)$ ist.

Korollar 5.9. Wir haben für $x > 0$ und $y > 0$
\[
\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = 2 \int_0^{\pi/2} (\sin \vartheta)^{2x-1}(\cos \vartheta)^{2y-1}d\vartheta.
\]
Insbesondere gilt $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

* Beweis. Es genügt die Variablentransformation $t = (\sin \vartheta)^2$ in (5.3).
Wir bemerken, dass
\[
\Gamma(\frac{1}{2}) = \int_0^\infty t^{-1/2}e^{-t}dt = 2 \int_0^\infty e^{-u^2}du = \sqrt{\pi}.
\]

Korollar 5.10. Wir haben für $x > 0$, dass
\[
\Gamma\left(\frac{x}{2}\right)\Gamma\left(\frac{x+1}{2}\right) = \sqrt{\pi}2^{1-x}\Gamma(x).
\]

* Beweis. Betrachten wir die Funktion $f(x) := 2^{x-1}\pi^{-1/2}\Gamma\left(\frac{1}{2}x\right)\Gamma\left(\frac{1}{2}(x+1)\right)$. Wir haben, dass $f(1) = 1$ und dass
\[
f(x+1) = 2^x\pi^{-1/2}\Gamma\left(\frac{1}{2}(x+1)\right)\Gamma\left(\frac{1}{2}x + 1\right)
= 2^x\pi^{-1/2}\Gamma\left(\frac{1}{2}(x+1)\right)\frac{1}{2}x\Gamma\left(\frac{1}{2}x\right) = xf(x).
\]
Schließlich ist f auch noch log-konvex, denn
\[
\ln f(x) = \ln x - \frac{1}{2} \ln \pi + \ln \left\{\Gamma\left(\frac{1}{2}(x+1)\right)\Gamma\left(\frac{1}{2}x + 1\right)\right\}.
\]
Damit folgt mit dem Satz von Artin, dass $f(x) = \Gamma(x)$.

5.4 Die Stirling-Formel im Komplexen

Satz 5.11. Für alle $s \in \mathbb{C} \setminus \mathbb{R}^-$ gilt, dass
\[
\log \Gamma(s) = (s - \frac{1}{2}) \log s - s + \frac{1}{2} \ln(2\pi) - \int_0^\infty B_1(t) \frac{dt}{s + t},
\]
wobei wir den Logarithmus log am Hauptteil genommen haben.

* Bemerkung. (i) Die Weierstraß-Formel zeigt, dass $\Gamma(s)$ keine Nullstellen hat und einfache Pole in den negativen ganzen Zahlen.
Beweis. Wir wenden die Euler-Maclaurin-Summenformel der Ordnung 0 auf die Funktion

\[h \]

wobei wir

\[K_{5.12} \]

Seien

\[s \]

\[n \]

\[H \]

Wir setzen

Subtrahieren wir nun die klassische Stirling-Formel für \(\ln \tau \) := \log(\tau + s) für \(s \in \mathbb{C} \setminus \mathbb{R}^- \) mit \(a = 0 \) und \(b = N \) an. Dann erhalten wir

\[
\sum_{1 \leq n \leq N} \log(n + s) = \int_0^N \log(t + s) dt + \frac{1}{2} \{ \log(N + s) - \log(s) \} + \int_0^N \frac{B_1(t) dt}{t + s}
\]

\[
= (s + N) \log(s + N) - (s + N) - s \log s + s + \frac{1}{2} \log(s + N) - \frac{1}{2} \log s + \int_0^N \frac{B_1(t) dt}{t + s}
\]

Subtrahieren wir nun die klassische Stirling-Formel für \(\ln n! \) der Form

\[
\ln n! = (N + \frac{1}{2}) \ln N - N + \frac{1}{2} \ln(2\pi) + o(1) \quad (N \to \infty).
\]

Dann erhalten wir

\[
\sum_{1 \leq n \leq N} \log \left(1 + \frac{s}{n} \right) = (N + \frac{1}{2}) \log \left(1 + \frac{s}{N} \right) + s \log(s + N) - (s + \frac{1}{2}) \log s
\]

\[
- \frac{1}{2} \ln(2\pi) + \int_0^N \frac{B_1(t) dt}{t + s} + o(1)
\]

\[
s(1 + \ln N) - (s + \frac{1}{2}) \log s - \frac{1}{2} \ln(2\pi) + \int_0^N \frac{B_1(t) dt}{t + s} + o(1).
\]

Wir setzen \(H_n := \sum_{1 \leq n \leq N} \frac{1}{n} \). Es folgt für \(s \in \mathbb{R}^+ \), dass

\[
\ln \left\{ se^{\gamma} s \prod_{1 \leq n \leq N} \left(1 + \frac{s}{n} \right) e^{-s/n} \right\}
\]

\[
= \ln s + s(\gamma - H_N + 1 + \ln N) - (s + \frac{1}{2}) \ln s - \frac{1}{2} \ln(2\pi) + \int_0^N \frac{B_1(t) dt}{t + s} + o(1)
\]

\[
= -(s - \frac{1}{2}) \ln s + s - \frac{1}{2} \ln(2\pi) + \int_0^N \frac{B_1(t) dt}{t + s} + o(1).
\]

Wenn wir nun \(N \to \infty \), dann erhalten wir das gewünschte Resultat für \(s \in \mathbb{R}^+ \). Für allgemeines \(s \) erhalten wir das Resultat mittels analytischer Fortsetzung.

\[K_{5.12} \]

Korollar 5.12. Seien \(\sigma_1 \) und \(\sigma_2 \) reell, sodass \(\sigma_1 < \sigma_2 \). Wir haben gleichmäßig für \(\sigma_1 \leq \sigma \leq \sigma_2 \) und \(|\tau| \to \infty \), dass

\[
\Gamma(s) = \left\{ 1 + \mathcal{O} \left(\frac{1}{|\tau|^s} \right) \right\} \sqrt{2\pi} |\tau|^{\sigma - \frac{1}{2}} e^{-\pi|\tau|/2} e^{ih_\sigma(\tau)},
\]

wobei wir \(h_\sigma(\tau) := \tau \ln |\tau| - \tau + \frac{1}{2}\pi(\sigma - \frac{1}{2})\text{sgn}(\tau) \) gesetzt haben.
5.5. HANKEL-FORMEL

Der Satz der inversen Mellin Transformation liefert folgendes

Korollar 5.13. Für $x > 0$ gilt

$$e^{-x} = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} \Gamma(s)x^{-s}ds \quad (\sigma > 0).$$

Korollar 5.14. Für $s \in \mathbb{C} \setminus \mathbb{Z}$ gilt

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}.$$

Beweis. Wir betrachten die meromorphe Funktion

$$f(s) := \frac{1}{\Gamma(s)\Gamma(1-s)\sin(\pi s)} = \frac{s(1-s)e^\gamma}{\sin(\pi s)} \prod_{j\geq 1} \left(1 + \frac{1}{j} + \frac{s(1-s)}{j^2}\right) e^{-1/j},$$

wobei wir die Weierstraß-Produktformel genutzt haben. Alle Nullstellen von $\sin(\pi s)$ werden von unendlichen Produkt geschluckt; f ist ganz. Darüber hinaus, haben wir

$$f(s + 1) = \frac{1}{\Gamma(s+1)\Gamma(-s)\sin(\pi s)} = \frac{1}{\Gamma(s)\Gamma(-s)\sin(\pi s)}$$

$$= \frac{1}{\Gamma(s)\Gamma(1-s)\sin(\pi s)} = f(s),$$

also ist f 1-periodisch. Für $\sigma \in [0,1]$ und $|\tau| \to \infty$, gilt mit (??)

$$\frac{1}{|f(s)|} \sim |\tau|^{|\sigma-\frac{1}{2}} e^{-\pi|\tau|/2} \sqrt{2\pi} |\tau|^{\sigma-\frac{1}{2}} e^{-\pi|\tau|/2} \sqrt{2\pi} |\sin \pi s| \sim 2\pi e^{-\pi|\tau|} |\sin \pi s| .$$

\[\square\]

Korollar 5.15 (Euler). Für alle $z \in \mathbb{C}$ gilt

$$\frac{\sin(\pi z)}{\pi z} = \prod_{n\geq 1} \left(1 - \frac{z^2}{n^2}\right).$$

5.5 Hankel-Formel

Definition 5.1. Seien $\delta, \rho > 0$. Dann bezeichnen wir mit $\mathcal{H}_{\delta,\rho}$ den Pfad in der komplexen Ebene, der in ρ auf der reellen Achse startet, den Ursprung in einem Kreis mit Radius δ entgegen dem Uhrzeigersinn umrundet und schließlich zurück zum Punkt ρ auf der reellen Achse kehrt.

Die Hankel-Kontor \mathcal{H} entspricht den Grenzübergängen $\delta \to 0$ und $\rho \to +\infty$.

\[\text{Diagramm}\]
Satz 5.16. Sei \mathcal{H} die Hankel-Kontur. Für eine komplexe Zahl z gilt

$$\Gamma(z) = -\frac{1}{2i\sin(\pi z)} \int_{\mathcal{H}} (-t)^{z-1} e^{-t} dt.$$

Beweis. Auf der reellen Achse erhalten wir im ersten Teil, dass $\arg(-t) = -\pi$ und somit ist

$$(-t)^{z-1} = e^{-i\pi(z-1)t^{z-1}}.$$

Analog gilt im letzten Teil $(-t)^{z-1} = e^{i\pi(z-1)t^{z-1}}$. Auf dem Kreis um den Ursprung schreiben wir

$$(-t)^{z-1} = e^{i\pi(z-1)t^{z-1}}.$$

Wir erhalten also

$$\int_{\mathcal{H}_{\delta, \rho}} (-t)^{z-1} e^{-t} dt \quad \begin{array}{c}
= \int_{\delta}^{\rho} e^{-i\pi(z-1)t^{z-1}} e^{-t} \frac{dt}{t^{z-1}} + \int_{-\pi}^{\pi} (\delta e^{i\theta})^{z-1} e^{-\delta e^{i\theta} \cdot i\theta} \frac{d\theta}{\delta e^{i\theta}} + \int_{\delta}^{\rho} e^{i\pi(z-1)t^{z-1}} e^{-t} \frac{dt}{t^{z-1}} \\
= -2i \sin(\pi z) \int_{\delta}^{\rho} t^{z-1} e^{-t} \frac{dt}{t^{z-1}} + i\delta \int_{-\pi}^{\pi} \frac{e^{iz\theta} e^{-\delta e^{i\theta}} d\theta}{\delta e^{i\theta}} \\
\end{array}$$

Dies gilt für alle $0 < \delta \leq \rho$. Für das zweite Integral erhalten wir im Grenzübergang

$$\lim_{\delta \to 0} \lim_{\rho \to +\infty} \int_{-\pi}^{\pi} e^{iz\theta} e^{-\delta e^{i\theta}} d\theta = \int_{-\pi}^{\pi} e^{iz\theta} d\theta = 0$$

Damit ergibt sich

$$\int_{\mathcal{H}} (-t)^{z-1} e^{-t} dt = -2i \sin(\pi z) \int_{0}^{\infty} t^{z-1} e^{-t} dt.$$

\square
Kapitel 6

Erzeugende Funktionen: Dirichlet Reihen

6.1 Konvergente Dirichlet Reihen

Sei \(f \) eine arithmetische Funktion. Wenn die Reihe

\[
S(z) := \sum_{n \geq 1} f(n) z^n
\]

in einer Umgebung von 0 konvergiert, dann geben uns mehrere klassische Sätze Auskunft über die Beziehung zwischen analytischen Eigenschaften von \(S \) und den Koeffizienten \(f(n) \) - zum Beispiel die Beziehung \(S^{(n)}(0) = n! f(n) \) oder die Formel von Cauchy.

Gleichermaßen stehen die analytischen Eigenschaften einer konvergenten Dirichlet-Reihe

\[
F(s) := \sum_{n \geq 1} \frac{f(n)}{n^s}
\]

im Verhältnis mit asymptotischen Eigenschaften der Folge \(f(n) \). Die Aufgabe in diesem Teil wird es sein, diese Beziehungen herzustellen.

Der Buchstabe \(s \) bezeichne hier immer eine komplexe Variable. Die reellen Variablen \(\sigma \) und \(\tau \) sind implizit durch die Gleichung

\[
s = \sigma + i\tau
\]

definiert.

Definition 6.1. Sei \(f \) eine arithmetische Funktion. Dann heißt \(F(s) \) in (6.1) die der arithmetischen Funktion \(f \) zugeordnete Dirichlet-Reihe. Sie ist definiert in jedem Punkt \(s \) in dem die Reihe konvergiert.

Wir beginnen mit einem fundamentalen Satz für die Dirichlet-Faltung.

Satz 6.1. Seien \(f, g, h \) arithmetische Funktionen und \(F, G, H \) deren assoziierte Dirichlet-Reihen. Wir nehmen an, dass

\[
h = f \ast g.
\]

Dann ist die Reihe \(H \) überall dort konvergent wo die Reihen \(F \) und \(G \) absolut konvergent sind und man hat unter diesen Umständen, dass

\[
H(s) = F(s)G(s).
\]
Beweis. Wenn F und G im Punkt s absolut konvergieren, dann gilt für alle $x \geq 1$, dass

$$\sum_{n \leq x} \left| \frac{h(n)}{n^s} \right| = \sum_{md \leq x} \left| \frac{f(m)g(d)}{m^sd^s} \right| \leq \sum_{m \leq x} \left| \frac{f(m)}{m^s} \right| \sum_{d \leq x} \left| \frac{g(d)}{d^s} \right| .$$

Damit folgt, dass $H(s)$ absolut konvergent ist. Den Rest haben wir bereits im ersten Teil gesehen.

6.2 Dirichlet-Reihen multiplikativer Funktionen

Wir haben im ersten Teil gesehen, dass formale Dirichlet-Reihen die Eigenschaft besitzen, in ein Euler-Produkt zu zerfallen. Hier wollen wir zeigen, dass dies auch vom analytischen Betrachtungspunkt der Fall ist.

Satz 6.2. Sei f eine multiplikative Funktion, s eine komplexe Variable und

$$\sum_{p} \sum_{\nu \geq 1} \left| \frac{f(p^\nu)}{p^{\nu s}} \right| < \infty. \quad (6.2)$$

Dann ist die assoziierte Dirichlet-Reihe F absolut konvergent und es gilt

$$F(s) = \prod_p \sum_{\nu \geq 0} \frac{f(p^\nu)}{p^{\nu s}}. \quad (6.3)$$

Beweis. Wir bemerken zu aller erst, dass die Bedingung (6.2) bedeutet, dass das unendliche Produkt $M := \prod_p \left(1 + \sum_{\nu \geq 1} |f(p^\nu)/p^{\nu s}| \right)$ konvergiert. Daher können wir für jedes $x \geq 1$ schreiben,

$$\sum_{n \leq x} \left| \frac{f(n)}{n^s} \right| \leq \sum_{p^+(n) \leq x} \left| \frac{f(n)}{n^s} \right| = \prod_{p \leq x} \left(1 + \sum_{\nu \geq 1} \left| \frac{f(p^\nu)}{p^{\nu s}} \right| \right) \leq M.$$

Das zeigt uns bereits, dass $F(s)$ absolut konvergent ist. Die obere Schranke

$$\left| \sum_{n \geq 1} \frac{f(n)}{n^s} - \prod_{p \leq x} \sum_{\nu \geq 0} \frac{f(p^\nu)}{p^{\nu s}} \right| = \left| \sum_{p^+(n) > x} \frac{f(n)}{n^s} \right| \leq \sum_{n > x} \left| \frac{f(n)}{n^s} \right|$$

impliziert (6.3) indem wir x gegen unendlich streben lassen.

Korollar 6.3. Für $\sigma > 1$ gilt

$$\zeta(s) = \prod_p \left(1 - \frac{1}{p^s} \right)^{-1}.$$

6.3 Fundamentale analytische Eigenschaften von Dirichlet-Reihen

Sei $n \mapsto a_n$ eine arithmetische Funktion. Wir setzen

$$A(t) := \sum_{n \leq e^t} a_n.$$
Dann können wir die assoziierte Dirichlet-Reihe in der Form

\[F(s) := \sum_{n \geq 1} a_n \frac{1}{n^s} = \int_{0^-}^\infty e^{-ts} dA(t) \]

schreiben. Dieses Integral nennt sich Laplace-Stieltjes Transformation von \(A(t) \). Der Großteil der fundamentalen Sätze über Dirichlet-Reihen lässt sich auf diese Form verallgemeinern, wobei sich das Stieltjes-Integral als ein nützliches Werkzeug erweist.

Sei \(\mathcal{V} \) die Klasse der auf \(\mathbb{R} \) definierten Funktionen mit endlicher Variation auf einem beschränkten Intervall. Nachdem unsere primäre Aufgabe die Analyse von Dirichlet-Reihen ist, wollen wir, wenn möglich, die Laplace-Stieltjes Transformationen von Funktionen in \(\mathcal{V} \) betrachten.

Satz 6.4. Sei \(A \) eine Funktion aus \(\mathcal{V} \) und

\[F(s) := \int_{0^-}^\infty e^{-st} dA(t) \quad (6.4) \]

ihre Laplace-Stieltjes Transformation.

(i) Wenn das Integral \(6.4\) für \(s = s_0 = \sigma_0 + i\tau_0 \) konvergiert, dann konvergiert es auch für alle reellen \(s \) mit \(\sigma > \sigma_0 \) und die Konvergenz ist gleichmäßig im ganzen Trichter

\[T_\vartheta := \{ s \in \mathbb{C} : |\arg(s - s_0)| \leq \vartheta \} \quad (0 \leq \vartheta < \pi/2). \]

(ii) Wenn das Integral \(6.4\) für \(s = s_0 \) absolut konvergiert, dann konvergiert es auch absolut in der abgeschlossenen Halbebene \(\sigma \geq \sigma_0 \).

(iii) Die Funktion \(F(s) \) ist holomorph im ganzen offenen Bereich der Konvergenz von \(6.4\) und es gilt

\[F^{(k)}(s) = \int_{0^-}^\infty (-t)^k e^{st} dA(t) \quad (k = 0, 1, 2, \ldots). \quad (6.5) \]

Beweis. (i) Sei \(\vartheta \in [0, \pi/2] \). Der Trichter \(T_\vartheta \) besteht aus allen komplexen Zahlen \(s \), sodass

\[|s - s_0| \leq \frac{\sigma - \sigma_0}{\cos \vartheta}. \]

Wir zeigen, dass für alle \(\varepsilon > 0 \) ein \(x_0 = x_0(\varepsilon, \vartheta) \) existiert, sodass für \(y \geq x \geq x_0 \)

\[\left| \int_x^y e^{-ts} dA(t) \right| \leq \varepsilon \quad (s \in T_\vartheta). \]

Dazu setzen wir

\[g(u) := \int_{0^-}^u e^{-ts_0} dA(t) \quad (u \geq 0). \]

Nach Voraussetzung gibt es ein \(x_0 = x_0(\varepsilon, \vartheta) \), sodass für \(v \geq u \geq x_0 \) gilt, dass

\[|g(v) - g(u)| \leq \frac{1}{2} \varepsilon \cos \vartheta. \]
Nun können wir für \(y \geq x \geq x_0 \) und \(s \in T_\sigma \setminus \{s_0\} \) schreiben
\[
\left| \int_x^y e^{ts} dA(t) \right| = \left| \int_x^y e^{-u(s-s_0)} d\{g(u) - g(x)\} \right|
\]
\[
= \left| e^{-y(s-s_0)} \{g(y) - g(x)\} + (s-s_0) \int_x^y e^{-u(s-s_0)} \{g(u) - g(x)\} du \right|
\]
\[
\leq \frac{1}{2} \varepsilon \cos \vartheta + |s-s_0| \frac{1}{2} \varepsilon \cos \vartheta \int_x^y e^{-u(s-s_0)} du
\]
\[
\leq \frac{1}{2} \varepsilon \cos \vartheta \left(1 + \frac{|s-s_0|}{\sigma - \sigma_0} \right) \leq \frac{1}{2} \varepsilon (\cos \vartheta + 1) \leq \varepsilon,
\]

womit die Behauptung gezeigt ist.

Behauptung (ii) ist nichts anderes als die Anwendung der trivialen Ungleichung:
\[
\int_x^y |e^{ts}| |dA(t)| \leq \int_x^y |e^{ts_0}| |dA(t)|,
\]
gültig für alle \(y \geq x \) und \(\sigma \geq \sigma_0 \).

Zeigen wir nun (iii). Die gleichmäßige Konvergenz der Exponentialreihe erlaubt es uns für \(x \geq 0 \)
\[
\int_0^x e^{ts} dA(t) = \sum_{n \geq 0} \frac{s^n}{n!} \int_0^x e^{(-t)^n} dA(t)
\]
zu schreiben. Die linke Seite dieser Gleichung ist eine Ganze Funktion in \(s \), deren \(k \)-te Ableitung gleich
\[
\sum_{n \geq 0} \frac{s^{n-k}}{(n-k)!} \int_0^x (-t)^n dA(t) = \int_0^x (-t)^k e^{ts} dA(t)
\]
is. Damit folgt Behauptung (iii) mit dem Satz von Weierstraß über die Ganzheit einer Grenzfunktion einer Funktionenfolge über einem kompakten Intervall.

Bemerkung. Im Hinblick auf die Punkte (i) und (ii) von Satz 6.4 ist die Menge der Abszissen \(\sigma \) der Punkte \(s \) in denen das Integral konvergiert beziehungsweise absolut konvergiert ein Strahl mit Ursprung \(\sigma_c \) beziehungsweise \(\sigma_a \). Wir nennen \(\sigma_c \) die Konvergenz-Abszisse der Dirichlet-Reihe. Man setzt \(\sigma_c = -\infty \), falls die Reihe überall konvergiert und \(\sigma_c = \infty \), falls kein Konvergenzpunkt existiert. Beispiele für derart extreme Fälle sind \(a_n = \frac{1}{n!} \) und \(a_n = n! \).

Satz 6.5. Nehmen wir an, dass das Integral \(F(s) \) aus (6.4) für \(\sigma > \sigma_c \) eine analytische Fortsetzung \(\tilde{F}(s) \) auf gewisse Punkte \(s \) der Abszisse \(\sigma = \sigma_c \) besitzt. Dann gilt
\[
\tilde{F}(s) = \int_0^\infty e^{-ts} dA(t)
\]
in jedem Punkt der Konvergenz des Integrals.

Beweis. Wir verwenden die Gleichmäßigkeit aus (i) von Satz 6.4 in der Form
\[
F(s) \sim \lim_{\delta \to 0^+} F(s + \delta) \quad (\sigma = \sigma_c).
\]
Nachdem \(\tilde{F} \) analytisch ist, gilt
\[
\tilde{F}(s) = \lim_{\delta \to 0^+} \tilde{F}(s + \delta) = \lim_{\delta \to 0^+} F(s + \delta) = F(s),
\]
wie gewünscht.
Wir wollen Satz 6.5 auf die Riemann Zeta-Funktion anwenden. Wir erhalten für \(\sigma > 1 \), dass

\[
\zeta(s) = \int_1^\infty \frac{d\{t\}}{t^s} = s \int_1^\infty \frac{\{t\}}{t^{s+1}} dt = \frac{s}{s-1} - s \int_1^\infty \frac{\{t\}}{t^{s+1}} dt.
\]

Nachdem das letzte Integral für \(\sigma > 0 \) absolut konvergiert, ist \(\zeta(s) \) analytisch fortsetzbar in eine Meromorphe Funktion für \(\sigma > 0 \), deren einzige Singularität ein einfacher Pol in \(s = 1 \) ist. Mit Satz 6.5 erhalten wir nun, dass, unter der Voraussetzung der Konvergenz der Reihe, gilt

\[
\sum_{n \geq 1} \frac{\mu(n)}{n} = \zeta^{-1}(1) = 0. \tag{6.6}
\]

Dies zeigt wiederum wie im Satz 4.17 die Äquivalenz des Primzahlsatzes mit der Konvergenz der Reihe (6.6).

Der folgende Satz zeigt, dass \(\sigma_c \) und \(\sigma_a \) nicht beliebig gewählt werden können.

Satz 6.6. Sei \(F(s) \) eine Dirichlet-Reihe definiert wie in (6.1). Dann gilt

\[
\sigma_c \leq \sigma_a \leq \sigma_c + 1.
\]

Beweis. Sei \(\varepsilon > 0 \). Die Konvergenz der Reihe \(\sum_{n \geq 1} f(n)n^{-\sigma_c - \varepsilon} \) impliziert die Schranke

\[
f(n) \ll \varepsilon n^{\sigma_c + \varepsilon}
\]

und daher die absolute Konvergenz der Reihe (6.1) im Punkt \(s = \sigma_c + 1 + 2\varepsilon \). Damit gilt \(\sigma_a \leq \sigma_c + 1 + 2\varepsilon \) und der Satz folgt mittels Grenzübergang. \(\square \)

Es ist leicht einzusehen, dass die Schranken in Satz 6.6 optimal sind. Für die Reihe

\[
G(s) := \sum_{n \geq 1} \frac{(-1)^n}{n^s} = \sum_{m \geq 1} \frac{1}{(2m)^s} - \left(\sum_{n \geq 1} \frac{1}{n^s} - \sum_{m \geq 1} \frac{1}{(2m)^s} \right) = (2^{1-s} - 1)\zeta(s) \tag{6.7}
\]

gilt \(\sigma_c = 0 \) (nach dem Leibniz-Kriterium) und \(\sigma_a = 1 \).

Satz 6.7. Die Dirichlet-Reihen \(F(s) = \sum_{n \geq 1} a_n n^{-s} \) und \(G(s) = \sum_{n \geq 1} b_n n^{-s} \) seien konvergent für \(\sigma > \sigma_c \). Es gebe eine Folge \((s_m) = (\sigma_m + i\tau_m) \) mit

\[
(i) \, \sigma_m \to \infty \text{ für } m \to \infty \text{ und }
(ii) \, \forall m: F(s_m) = \zeta(s_m).
\]

Dann gilt

\[
\forall n: a_n = b_n.
\]

Beweis. Wir setzen \(c_n = a_n - b_n \). Dann verschwindet \(H(s) = \sum_{n \geq 1} c_n n^{-s} \) an den Stellen \(s = s_m \). Ohne Beschränkung der Allgemeinheit nehmen wir an, dass \(H \) bei \(s = 0 \) absolut konvergiert (sonst setzen wir \(c'_n = c_n n^{-s} \) für ein gewisses \(s^* \)). Es werde auch \(\sigma_m > 1 \) für alle \(m \) angenommen.
Es muss $c_n = 0$ für alle n gezeigt werden. Angenommen, dies sei falsch und n_0 der kleinste Index mit $c_n \neq 0$. Dann ergibt sich für alle $m \in \mathbb{N}$

\[0 < \frac{|c_{n_0}|}{n_0^{-\sigma_m}} \leq \sum_{n > n_0} |c_n| n^{-\sigma_m} \leq B \sum_{n > n_0} n^{-\sigma_m} < B \int_{n_0}^{\infty} t^{-\sigma_m} d t = B \frac{n_0^{1-\sigma_m}}{\sigma_m - 1}, \]

woraus

\[\sigma_m - 1 \leq \frac{B|c_{n_0}|}{n_0} \]

folgt. Diese Ungleichung wir für $m \to \infty$ widersprüchlich.

In Analogie mit den erzeugenden Funktionen könnte man glauben, dass jede Dirichlet-Reihe notwendigerweise eine Singularität auf der Konvergenz-Abszisse besitzt. Das ist aber nicht der Fall. Die Dirichlet-Reihe in (6.7) ist ein exzellentes Gegenbeispiel. Wir werden später sehen, dass sich ζ in eine meromorphe Funktion auf ganz \mathbb{C} fortsetzen lässt, die nur einen einfachen Pol in $s = 1$ besitzt. Das impliziert aber, dass $G(s)$ in eine holomorphe Funktion auf $\sigma > -1$ fortgesetzt werden kann.

Satz 6.8 (Phragmén-Landau). Seien A eine Funktion in \mathcal{V} und $F(s)$ ihre Laplace-Stieltjes Transformation. Wenn A monoton wachsend ist, dann ist $s = \sigma_c$ eine Singularität von $F(s)$.

Beweis. Wir führen einen Beweis durch Widerspruch. Angenommen, F sei fortsetzbar in eine holomorphe Funktion in einer Umgebung von $s = \sigma_c$. Es gibt also $\sigma > \sigma_c$ und $r > \sigma - \sigma_c$, sodass die Taylor-Reihe von F im Punkt σ, gegeben durch

\[F(s) = \sum_{k \geq 0} \frac{1}{k!} F^{(k)}(\sigma)(s - \sigma)^k, \]

auf der ganzen Scheibe $|s - \sigma| < r$ konvergiert. Mit (6.5) gilt, dass wir unter dieser Voraussetzung

\[F(s) = \sum_{k \geq 0} \frac{1}{k!} (s - \sigma)^k \int_{0^{-}}^{\infty} (-t)^k e^{-\sigma t} d A(t) \]

\[= \sum_{k \geq 0} \frac{1}{k!} \int_{0^{-}}^{\infty} t^k (\sigma - s)^k e^{-\sigma t} d A(t) \]

schreiben können. Solange s reell ist, $\sigma - r < s < \sigma$, ist die Vertauschung der Summen gerechtfertigt, weil der Integrand und das Maß $d A(t)$ positiv oder null ist. Es folgt, dass

\[F(s) = \int_{0^{-}}^{\infty} \sum_{k \geq 0} \frac{1}{k!} t^k (\sigma - s)^k e^{-\sigma t} d A(t) \]

\[= \int_{0^{-}}^{\infty} e^{t(\sigma - s)} e^{-\sigma t} d A(t) = \int_{0^{-}}^{\infty} e^{-st} d A(t). \]

Da$ F(s)$ konvergiert das Laplace-Stieltjes Integral im Punkt s, was absurd ist, denn wir könnten $s < \sigma_c$ wählen. \qed
6.4 Konvergenz-Abszisse und Mittelwert

Sei A eine Funktion in V und

$$F(s) = \int_{0^-}^{\infty} e^{-ts}dA(t) \quad (6.8)$$

ihre Laplace-Stieltjes Transformation. Unser Ziel in diesem Abschnitt ist es den Zusammenhang zwischen Konvergenz-Abszisse und asymptotischem Verhalten von A zu analysieren. Es ist klar, dass der Wert von A in einer Umgebung irgendeines Punktes mit endlichen Abstand ohne Einfluss auf den Wert von σ_c ist. Wir können daher ohne Beschränkung der Allgemeinheit die folgende vereinfachende Hypothese annehmen:

$$A(0^{\pm}) = 0.$$

Die explizite Berechnung von σ_c ist Gegenstand des Satzes 6.10 unten. Sein Beweis basiert auf folgendem

Satz 6.9. Sei σ_c die Konvergenz-Abszisse des Integrals $F(s)$.

(i) Wenn $A(x) \ll e^{\delta x}$ für ein reelles δ gilt, dann ist $\sigma_c \leq \delta$.

(ii) Wenn das Integral (6.8) für $s = s_0$ mit $\sigma_0 > 0$ konvergiert, dann gilt

$$A(x) = o(e^{\sigma_0 x}) \quad (x \to \infty).$$

(iii) Wenn das Integral (6.8) für $s = s_0$ mit $\sigma_0 < 0$ konvergiert, dann gibt es ein reelles α, sodass

$$A(x) = \alpha + o(e^{\sigma_0 x}) \quad (x \to \infty).$$

Beweis. (i). Für alle $x > 0$ gilt

$$\int_0^x e^{-st}dA(t) = A(x)e^{-sx} + s \int_0^x e^{-st}A(t)dt.$$

Die Voraussetzung über das Wachstum von $A(t)$ impliziert die Konvergenz des Integrals (6.8) für alle s mit $\sigma > \delta$. Damit gilt sicher $\sigma_c \leq \delta$.

(ii). Nach Voraussetzung gilt

$$B(x) := \int_0^x e^{-s_0 t}dA(t) = F(s_0) + o(1) \quad (x \to \infty). \quad (6.9)$$

Wir können daher folgern, dass

$$A(x) = \int_0^x e^{s_0 t}dB(t) = e^{s_0 x}B(x) - s_0 \int_0^x e^{s_0 t}B(t)dt$$

$$= s_0 \int_0^x \{B(x) - B(t)\} e^{s_0 t}dt + B(x).$$

Damit folgt dieser Teil aus (6.9).
KAPITEL 6. ERZEUGENDE FUNKTIONEN: DIRICHLET REIHEN

(iii). Nach Satz 6.4(i) können wir sicher gehen, dass \(F(s) \) für \(s = 0 \) konvergiert. Wir setzen \(\alpha := F(0) \) und erhalten mit der Notation aus (6.9), dass

\[
\alpha - A(x) = \int_{x}^{\infty} e^{\sigma t} dB(t) = -e^{\sigma x} B(x) - s_{0} \int_{x}^{\infty} e^{\sigma t} B(t) dt \\
= s_{0} \int_{x}^{\infty} (B(x) - B(t)) e^{\sigma t} dt = s_{0} \int_{x}^{\infty} \sigma(e^{\sigma t}) dt = o(e^{\sigma x}).
\]

\[\square\]

Bemerkung. Die Punkte (ii) und (iii) aus Satz 6.9 sind falsch für \(\sigma_{0} = 0 \). Ein Gegenbeispiel zur ersten Aussage ist durch folgende Funktion gegeben:

\[
A(x) = \begin{cases}
0 & (0 \leq x \leq 1) \\
1 & (x > 1)
\end{cases}
\]

Das Integral (6.8) konvergiert hier für \(\sigma_{0} = 0 \), aber es gilt nicht \(A(x) = o(1) \) in Unendlich. Für die zweite Aussage betrachten wir

\[
A(x) = \begin{cases}
0 & (0 \leq x \leq 1) \\
2\sqrt{x} & (x > 1)
\end{cases}
\]

Hier gilt klarerweise

\[
F(i) = 2e^{-i} + \int_{1}^{\infty} t^{-1/2} e^{it} dt.
\]

Das Integral konvergiert hier; aber \(A(x) \) hat keinen endlichen Grenzwert für \(x \to \infty \).

Satz 6.10. Setzen wir \(\kappa := \limsup_{x \to \infty} x^{-1} \ln |A(x)| \).

(i) Wenn \(\kappa \neq 0 \) ist, dann gilt \(\sigma_{c} = \kappa \).

(ii) Wenn \(\kappa = 0 \) ist, dann konvergiert \(A(x) \) entweder nicht gegen einen endlichen Grenzwert für \(x \to \infty \) und daher ist \(\sigma_{c} = 0 \) oder es gibt ein reelles \(\alpha \), sodass \(A(x) \to \alpha \) für \(x \to \infty \) und es gilt

\[
\sigma_{c} = \limsup_{x \to \infty} x^{-1} \ln |A(x) - \alpha| \leq 0.
\]

Beweis. Für jedes fixe \(\varepsilon > 0 \) gilt \(A(x) \ll \varepsilon e^{(\kappa+\varepsilon)x} \). Der Punkt (i) von Satz 6.9 liefert in diesem Fall, dass

\[
\sigma_{c} \leq \kappa. \quad (6.10)
\]

Nehmen wir zunächst an, dass \(\kappa > 0 \) ist. Dann divergiert das Integral \(F(s) \) solange \(0 < \sigma < \kappa \), denn sonst würde nach Satz 6.9 gelten, dass \(A(x) = o(e^{\sigma x}) \), was der Definition von \(\kappa \) widerspricht. Also ist \(\sigma_{c} \geq \kappa \).

Wenn \(\kappa < 0 \) ist, dann gilt \(A(x) \to 0 \) für \(x \to \infty \); Punkt (iii) aus Satz 6.9 liefert nun

\[
A(x) = o(e^{\sigma x}) \quad (x \to \infty) \quad (6.11)
\]

für alle \(\sigma > \sigma_{c} \). Aber nach Definition von \(\kappa \) erfüllt kein \(\sigma < \kappa \) Gleichung (6.11). Damit ist \(\sigma_{c} \geq \kappa \) und wir haben die zweite Ungleichung.
Versetzen wir uns nun in den Fall $\kappa = 0$. Wenn $A(x)$ keinen endlichen Grenzwert besitzt, dann divergiert das Integral $F(s)$ in $s = 0$ und somit erlauben $\sigma_c \geq 0$ und (6.10) die Behauptung zu folgern. Wenn $A(x) = \alpha + o(1)$, dann müssen wir zeigen, dass $\sigma_c = \xi$ wobei ξ das infimum der reellen σ_1 ist, sodass

$$A(x) = \alpha + o(e^{\sigma_1 x}).$$

Nach Punkt (iii) von Satz 6.9 gilt, dass $\sigma_c \geq \xi$ ist. Eine partielle Integration zeigt, dass $F(s)$ konvergiert, sobald $\sigma > \xi$ ist, daher gilt $\sigma_c \leq \xi$. \square
Kapitel 7

Die Riemannsche Zeta-Funktion I

Die Dirichlet-Reihe $\sum_{n\geq 1} n^{-s}$ konvergiert kompakt und absolut für $\sigma > 1$. Die dort dargestellte holomorphe Funktion heißt Riemannsche Zeta-Funktion $\zeta(s)$. Diese Reihe wurde - allerdings nur für reelle $s > 1$ - zwischen 1734 und 1748 schon von Euler betrachtet. Von ihm stammen die berühmten Formeln

$$\zeta(2n) = \frac{(-1)^{n-1} B_{2n} (2\pi)^{2n}}{2(2n)!} \quad (n \in \mathbb{N}).$$

Für $\zeta(2n+1)$ ist bis heute keine vergleichbare Formel bekannt.

In dem 1860 erschienen Artikel "Über die Anzahl der Primzahlen unter einer gegebenen Größe" definierte Bernhard Riemann die Funktion erstmals für komplexe s und erkannte ihre Bedeutung für die Untersuchung der Primzahlen.

7.1 Analytische Fortsetzung

Satz 7.1. Die Funktion $\zeta(s)$ kann analytisch in eine meromorphe Funktion auf ganz \mathbb{C} fortgesetzt werden, die nur einen einzigen einfachen Pol in $s = 1$ mit Residuum 1 hat.

Beweis. Für $\sigma > 1$ gilt

$$G(s) := \sum_{n\geq 1} \frac{(-1)^n}{n^s} = \sum_{m\geq 1} \frac{1}{(2m)^s} - \left(\sum_{n\geq 1} \frac{1}{n^s} - \sum_{m\geq 1} \frac{1}{(2m)^s} \right) = (2^{1-s} - 1)\zeta(s).$$

Daher ist $G(s)$ konvergent für $\sigma > 0$ und wir haben

$$G(1) = -\ln 2 \neq 0, \quad G(s_k) = 0 \quad (s_k := 1 + 2\pi ik/\ln 2, k \neq 0).$$

Die zweite Formel liefert die Abschätzung

$$\sum_{n\leq x} \frac{(-1)^n}{n^{s_k}} = 2^{1-s_k} \sum_{n\leq x/2} \frac{1}{n^{s_k}} - \sum_{n\leq x} \frac{1}{n^{s_k}} = - \sum_{x/2 < n \leq x} \frac{1}{n^{s_k}} \ll \frac{1}{x},$$

wobei wir Abel'sche Summation verwendet haben. Wir erhalten also die gewünschte Eigenschaft auf der Halbebene $\sigma > 0$. Dasselbe Resultat erhalten wir durch partielle Integration:

$$\zeta(s) = \int_{1-}^{\infty} \frac{d\{t\}}{t^s} = \int_1^{\infty} \frac{dt}{t^s} - \int_{1-}^{\infty} \frac{d\{t\}}{t^s} = \frac{s}{s-1} - s \int_{1-}^{\infty} \{t\} \frac{dt}{t^{s+1}},$$

69
KAPITEL 7. DIE RIEMANNSCHE ZETA-FUNKTION I

anfangs gültig für σ > 1, und die liefert uns einen anderen Ausdruck für die Fortsetzung für σ > 0.
Wir könnten nun das gewünschte Resultat durch sukzessive Integration der einen oder anderen Gleichung erreichen. Hier wollen wir aber eine andere Methode von Riemann verwenden, die mit viel subtileren Mitteln auskommt.
Der Ausgangspunkt ist die Formel

\[\Gamma(s)n^{-s} = \int_0^\infty t^{s-1}e^{-nt}dt \quad (\sigma > 0). \]

Indem wir über \(n \geq 1 \) summieren erhalten wir für σ > 1

\[\Gamma(s)\zeta(s) = \sum_{n \geq 1} \int_0^\infty t^{s-1}e^{-nt}dt = \int_0^\infty \frac{t^{s-1}}{e^t-1}dt. \]

Wir erhalten nun die analytische Fortsetzung, indem wir den Integrationsweg durch die Hankel-Kontur \(C_\rho \), wobei \(0 < \rho < 2\pi \) ein reeller Parameter ist, ersetzen. Die Hankel-Kontur besteht aus dem Strahl \([\rho, +\infty[\) von rechts nach links durchlaufen mit dem Argument \(0^+ \), dem Kreis \(|z| = \rho \), ohne dem Punkt \(z = \rho \), im trigonometrischen Sinn durchlaufen und dem Strahl \([\rho, +\infty[\) von links nach rechts durchlaufen mit dem Argument \((2\pi)^- \).
Nachdem die Funktion \(z \mapsto z^{s-1}(e^z - 1)^{-1} \) holomorph im horizontalen Band \(|\Im z| < 2\pi \) ohne dem Strahl \([0, +\infty[\) ist, ist das Integral

\[I(s) := \oint_{C_\rho} z^{s-1} \frac{dz}{e^z-1} \]

unabhängig von der Wahl von \(\rho \) in \(]0, 2\pi[\). Es konvergiert absolut für jedes \(s \in \mathbb{C} \) und ist gleichmäßig konvergent auf jeder kompakten Menge. Es ist also eine ganze Funktion in \(s \) und es gilt

\[I(s) = \oint_{|z|=\rho} z^{s-1} \frac{dz}{e^z-1} + (e^{2\pi is} - 1) \int_{\rho}^{\infty} t^{s-1} \frac{dt}{e^t-1}. \]

Wenn wir die Abschätzung

\[|z^{s-1}/(e^z - 1)| \ll_s \rho^{\sigma-2} \quad (|z| = \rho \leq \pi) \]

verwenden, erhalten wir, indem wir \(\rho \) gegen 0 gehen lassen, die Formel

\[I(s) = (e^{2\pi is} - 1)\Gamma(s)\zeta(s) \quad (\sigma > 1). \quad (7.1) \]

Die Komplementärformeln \(\Gamma(s)\Gamma(1-s) = \pi/\sin(\pi s) \) implizieren, dass

\[\zeta(s) = \frac{e^{-\imath \pi s}}{2\pi \imath} \Gamma(1-s)I(s). \quad (7.2) \]

Diese Formel, ursprünglich nur gültig für \(\sigma > 1 \) liefert uns eine explizite analytische Fortsetzung von \(\zeta(s) \) auf ganz \(\mathbb{C} \). Sobald \(\sigma \leq 0 \) ist, ist der Faktor \(\Gamma(1-s) \) holomorph, daher hat \(\zeta(s) \) keine andere Singularität als die bei \(s = 1 \). Damit ist der Beweis abgeschlossen. \(\square \)

Die Gleichung \((7.1) \) liefert uns sogleich den Wert von \(\zeta(s) \) auf den negativen ganzen Zahlen.
Satz 7.2. Sei \(B_n \) die \(n \)-te Bernoulli-Zahl. Dann
\[
\zeta(-n) = (-1)^n \frac{B_{n+1}}{n+1} \quad (n \geq 0).
\]
Insbesondere ist \(\zeta(-2n) = 0 \) für alle \(n \geq 1 \).

Beweis. Wir haben die Bernoulli-Zahlen mittels folgender erzeugenden Funktion definiert:
\[
(e^z - 1)^{-1} = \sum_{m=0}^{\infty} \frac{1}{m!} B_m z^{m-1}.
\]
Daher folgt mit (7.1), dass
\[
I(-n) = \oint_{|z|=\rho} (e^z - 1)^{-1} z^{-n-1} \, dz = 2\pi i \frac{B_{n+1}}{(n+1)!}.
\]
Damit erhalten wir das gewünschte Resultat, indem wir in (7.2) einsetzen.

Satz 7.3. Für \(s \to 1 \) gilt
\[
\zeta(s) = \frac{1}{s-1} + \gamma + \mathcal{O}(s-1).
\]

Beweis. Für \(\sigma = \Re(s) > 0 \) können wir schreiben
\[
\zeta(1+s) = \sum_{n \geq 1} \frac{s}{n} \int_1^{\infty} \frac{dt}{t^{s+1}} = s \int_1^{\infty} \sum_{n \leq t} \frac{1}{nt^{s+1}}
\]
\[
= s \int_1^{\infty} \left\{ \ln t + \mathcal{O}\left(\frac{1}{t}\right) \right\} \frac{dt}{t^{s+1}} = \frac{1}{s} + \gamma + s \int_1^{\infty} \mathcal{O}\left(\frac{1}{t}\right) \frac{dt}{t^{s+1}}.
\]

7.2 Approximation im kritischen Streifen

Damit können wir bereits einige Abschätzungen für arithmetische Funktionen gewinnen. Sei \(\zeta(s) \) die Riemannsche Zeta-Funktion, die wir mittels folgender Gleichung
\[
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \quad (s > 1)
\]
und der Gleichung
\[
\zeta(s) = \lim_{x \to \infty} \left(\sum_{n \leq x} \frac{1}{n^s} - \frac{x^{1-s}}{1-s} \right) \quad (0 < s < 1)
\]
definieren.

Satz 7.4. Für \(x \geq 1 \) gilt
\[
(a) \sum_{n \leq x} \frac{1}{n^s} = \frac{x^{1-s}}{1-s} + \zeta(s) + \mathcal{O}(x^{-s}) \quad (s > 0, s \neq 1).
\]
\[
(b) \sum_{n > x} \frac{1}{n^s} = \mathcal{O}(x^{1-s}) \quad (s > 1).
\]
\[
(c) \sum_{n \leq x} n^{\alpha} = \frac{x^{\alpha+1}}{\alpha+1} + \mathcal{O}(x^\alpha) \quad (\alpha \geq 0).
\]
Beweis. Der Beweis von (a) basiert auf einer Anwendung der Euler-Maclaurin Formel mit \(f(x) = x^{-s} \), wobei \(s > 0 \) und \(s \neq 1 \). Dann gilt

\[
\sum_{n \leq x} \frac{1}{n^s} = \int_1^x \frac{dt}{t^s} - s \int_1^x \frac{t - [t]}{t^{s+1}} dt + 1 - \frac{x - [x]}{x^s}
\]

\[
= \frac{x^{1-s}}{1-s} - \frac{1}{1-s} + 1 - s \int_1^\infty \frac{t - [t]}{t^{s+1}} dt + O(x^{-s}).
\]

Daher

\[
\sum_{n \leq x} \frac{1}{n^s} = \frac{x^{1-s}}{1-s} + C(s) + O(x^{-s}),
\]

wobei

\[
C(s) = 1 - \frac{1}{1-s} - s \int_1^\infty \frac{t - [t]}{t^{s+1}} dt.
\]

Für \(s > 1 \), konvergiert die linke Seite von \((7.3) \) gegen \(\zeta(s) \) wenn \(x \to \infty \) und die Terme \(x^{1-s} \) und \(x^{-s} \) konvergieren beide gegen 0. Daher ist \(C(s) = \zeta(s) \) wenn \(s > 1 \). Für \(0 < s < 1 \), haben wir \(x^{-s} \to 0 \) und \((7.3) \) zeigt, dass

\[
\lim_{x \to \infty} \left(\sum_{n \leq x} \frac{1}{n^s} - \frac{x^{1-s}}{1-s} \right) = C(s).
\]

Daher ist \(C(s) \) gleich \(\zeta(s) \) wenn \(0 < s < 1 \). Damit ist (a) bewiesen.

Um (b) zu zeigen verwenden wir (a) mit \(s > 1 \). Dann gilt

\[
\sum_{n > x} \frac{1}{n^s} = \zeta(s) - \sum_{n \leq x} \frac{1}{n^s} = \frac{x^{1-s}}{s-1} + O(x^{-s}) = O(x^{1-s})
\]

nachdem \(x^{-s} \leq x^{1-s} \).

Schließlich, um (c) zu zeigen verwenden wir die Euler-Maclaurin Formel ein weiteres mal mit \(f(t) = t^\alpha \) und erhalten

\[
\sum_{n \leq x} n^\alpha = \int_1^x t^\alpha dt + \alpha \int_1^x t^{\alpha-1} (t - [t]) dt + 1 - (x - [x]) x^\alpha
\]

\[
= \frac{x^{\alpha+1}}{\alpha + 1} - \frac{1}{\alpha + 1} + O \left(\alpha \int_1^x t^{\alpha-1} dt \right) + O(x^\alpha)
\]

\[
= \frac{x^{\alpha+1}}{\alpha + 1} + O(x^\alpha).
\]

\(\square \)

Satz 7.5. Es existieren \(C_1, C_2 > 0 \), sodass für \(|t| \geq 2, 1 - \frac{1}{\ln |t|} \leq \sigma \leq 2 \) gilt, dass

\[
(1) \quad |\zeta(\sigma + it)| \leq C_1 \ln |t|,
\]

\[
(2) \quad |\zeta(\sigma + it)| \leq C_2 \ln^2 |t|.
\]
7.3. ERSTE LOKALISIERUNG DER NULLSTELLEN

Beweis. Für \(\sigma > 1 \) ist \(\zeta(\sigma + it) = \zeta(\sigma - it) \). Dies setzt sich fort in \(\{s, \sigma > 0\} \). Es gilt also \(|\zeta(\sigma + it)| = |\zeta(\sigma - it)| \), ebenso für \(\zeta' \). Es reicht daher, \(t \geq 2 \) zu betrachten.

Mit Satz 7.4 folgt, dass
\[
|\zeta(s)| \leq \left| \sum_{n \leq N} a_n n^{-s} \right| + \left| \sum_{n \leq N} \frac{N^{1-s}}{s-1} \right| + O(N^{-s})
\]
\[
\leq \sum_{n \leq N} \frac{1}{n} \left\{ \begin{array}{ll}
N^{1-\sigma}, & \text{falls } \sigma < 1 \\
1, & \text{falls } \sigma \geq 1
\end{array} \right\} + N^{1-\sigma} + C_3 N^{-\sigma}
\]
\[
\leq \exp\left(\frac{\ln N}{\ln t} \right) \ln(t+1) + C_3 N^{-\sigma}
\]
\[
\leq C_4 \ln t.
\]

Die zweite Behauptung folgt analog aus der Ableitung der Formel in Satz 7.4.

7.3 Erste Lokalisierung der Nullstellen

Satz 7.6 (Mertens). Sei \(F(s) := \sum_{n \geq 1} \frac{a_n}{n^s} \) eine Dirichlet-Reihe mit nicht-negativen Koeffizienten und Konvergenz-Abszisse \(\sigma_c \). Dann gilt
\[
3F(\sigma) + 4\Re F(\sigma + i\tau) + \Re F(\sigma + 2i\tau) \geq 0 \quad (\sigma \geq \sigma_c).
\]

Beweis. Wir setzen \(V(\vartheta) := 3 + 4 \cos \vartheta + \cos 2\vartheta \) (\(\vartheta \in \mathbb{R} \)). Einfaches Nachrechnen zeigt uns, dass \(V(\vartheta) = 2(1 + \cos \vartheta)^2 \geq 0 \). Nachdem die linke Seite der Gleichung
\[
\sum_{n \geq 1} a_n V(\tau \ln n) n^{-\sigma}
\]
entspricht, folgt der Satz.

Korollar 7.7. Es gilt
\[
\zeta(\sigma)^3 |\zeta(\sigma + i\tau)|^4 |\zeta(\sigma + 2i\tau)| \geq 1 \quad (\sigma \geq 1). \tag{7.4}
\]

Beweis. Es genügt den Satz auf die Funktion
\[
F(s) = \log \zeta(s) = -\sum_p \log(1 - p^{-s}) = \sum_{n \geq 2} \frac{\Lambda(n)}{n^s \ln n}
\]
anzuwenden, die für \(\sigma > 1 \) konvergiert.

Wir können nun folgendes Resultat beweisen.

Satz 7.8. Die Funktion \(\zeta(s) \) besitzt keine Nullstelle in der Halbebene \(\sigma \geq 1 \).

Beweis. Wir führen einen Beweis durch Widerspruch. Angenommen \(\zeta(1+i\tau_0) = 0 \) für ein \(\tau_0 \neq 0 \). Dann hat die Funktion
\[
\sigma \mapsto \zeta(\sigma)^3 |\zeta(\sigma + i\tau_0)|^4
\]
bei \(\sigma = 1 \) eine Nullstelle, denn der Pol der Ordnung 3 von \(\zeta(s)^3 \) wird durch die Nullstelle der Ordnung \(\geq 4 \) der Funktion \(\zeta(\sigma + i\tau_0) \) aufgehoben. Daraus folgt

\[
\lim_{\sigma \to 1^+} \zeta(\sigma)^3 |\zeta(\sigma + i\tau_0)|^4 |\zeta(\sigma + 2i\tau_0)| = 0,
\]

was der vorigen Abschätzung widerspricht.

Alternativ ist \(\zeta(s) \) holomorph in einer Umgebung von \(1 + i\tau_0 \). Daher

\[
\zeta(\sigma + i\tau_0) \ll \sigma - 1 \quad (\sigma > 1).
\]

Andererseits ist

\[
\zeta(\sigma) \ll 1/(\sigma - 1), \quad \zeta(\sigma + 2i\tau_0) \ll 1 \quad (\sigma > 1)
\]

(denn \(s = 1 \) ist ein einfacher Pol und \(\zeta(s) \) ist überall holomorph außer in \(s = 1 \)) und es folgt, dass

\[
\zeta(\sigma)^3 |\zeta(\sigma + i\tau_0)|^4 |\zeta(\sigma + 2i\tau_0)| \ll \sigma - 1 \quad (\sigma > 1),
\]

was aber (7.4) widerspricht für \(\sigma \to 1^+ \). \(\square \)
Kapitel 8

Der Primzahlsatz I

8.1 Dualität Abelsche/Taubersche Sätze

Unser Ziel war und ist die Abschätzung der summatorischen Funktion gewisser arithmetischer Funktionen. In den folgenden Kapiteln werden wir analytische Fortsetzungen von Dirichlet-Reihen verwenden um Informationen über die summatorische Funktion zu gewinnen. Im Gegensatz dazu analysieren die Tauberschen Sätze die erzeugende Funktion nur in den Punkten der Konvergenz. Dies ermöglicht oft eine viel einfachere Anwendung. Der Preis dafür ist ein schlechter Fehlerterm, der uns aber für den Primzahlsatz gerade genügt.

Wir beginnen mit einem klassischen Satz von Abel.

Satz 8.1 (Abel). Sei \(f(z) := \sum_{n \geq 0} a_n z^n \) eine Potenzreihe mit Konvergenzradius 1 und konvergent in \(z = 1 \). Für jedes reelle \(\vartheta \) mit \(0 \leq \vartheta < \pi/2 \) und jedem Trichter

\[
T_\vartheta := \{z: |z| < 1, |\arg(1-z)| \leq \vartheta\},
\]

gilt, dass

\[
\lim_{z \to 1, z \in T_\vartheta} f(z) = f(1).
\]

Beweis. Sei \(z = 1 - re^{i\varphi} \in T_\vartheta \), mit \(r > 0 \) und \(|\varphi| \leq \vartheta \). Dann gilt

\[
|z|^2 = 1 - 2r \cos \varphi + r^2 < 1,
\]

und daher \(r < 2 \cos \varphi \). Für \(r \to 0 \) strebt \(z \to 1 \), und wir können annehmen, dass \(r \leq \cos \vartheta \). Bezeichnen wir mit \(T_\vartheta^* \) den Teil von \(T_\vartheta \) der dieser zusätzlichen Bedingung genügt. Solange \(z \in T_\vartheta^* \) erhalten wir also

\[
|1 - z| \cos \vartheta = r \cos \vartheta \leq r(2 \cos \varphi - r) = 1 - |z|^2 \leq 2(1 - |z|).
\]

Es genügt zu zeigen, dass die Konvergenz der Reihe \(f(z) \) gleichmäßig in Trichter \(T_\vartheta^* \) ist, d.h. dass

\[
\sup_{z \in T_\vartheta^*} \left| \sum_{n > N} a_n z^n \right| \to 0 \quad (N \to \infty).
\]

Wir setzen \(A_n := \sum_{N < m \leq n} a_m \) \((n \geq N)\) und \(\epsilon_N := \sup_{n > N} |A_n| \) derart, dass unsere Hypothese der Konvergenz von \(f(1) \) gleichbedeutend damit ist, dass \(\lim_{N \to \infty} \epsilon_N = 0 \). Ein Anwendung
von Abelscher Summation erlaubt es uns, für $z \in T_0^*$

$$\left| \sum_{n>N} a_n z^n \right| = \left| (1-z) \sum_{n>N} A_n z^n \right| \leq \frac{\epsilon N |1-z| |z|^N}{1-|z|} \leq \frac{2\epsilon N}{\cos \vartheta}$$

zu schreiben.

Satz 8.1 stellt den Prototypen einer Klasse von Sätzen dar, die oft Abelsche Sätze genannt werden und die folgende gemeinsame Charakteristik besitzen: Sie ermöglichen, dass, wenn eine Folge (oder eine Funktion) ziemlich regulär ist, dann besitzen gewisse Mittelwerte von ihr auch reguläres Verhalten. Eine sehr bekannte Implikation von dieser Art, der Satz von Cesàro

$$\lim_{n \to \infty} a_n = a \implies \lim_{n \to \infty} \frac{1}{n} \sum_{0 \leq m \leq n} a_m = a$$

ist ein abelscher Satz. Wenn wir $b_n = \sum_{0 \leq m \leq n} a_m$ (derart, dass wir $f(z) = \sum_{m \geq 0} a_m z^m = (1-z) \sum_{n \geq 0} b_n z^n$ erhalten) setzen, dann können wir Satz 8.1 schreiben als

$$\lim_{n \to +\infty} b_n = b \implies \lim_{z \to 1, z \in T_0^*} (1-z) \sum_{n \geq 0} b_n z^n = b.$$

Die Umkehrung eines abelschen Satzes ist im allgemeinen Falsch. Zum Beispiel die Summe der Potenzreihe

$$f(z) = \sum_{n \geq 0} (-1)^n z^n = \frac{1}{1+z}$$

konvergiert gegen $\frac{1}{2}$ für $z \to 1$, aber die Reihe selbst divergiert in $z = 1$. Ein tauberscher Satz liefert hinreichende Bedingungen für die Verifikation der Umkehrung. Ein erstes Resultat in diese Richtung ist der Satz von Tauber – siehe unten.

Wir wollen diesen Abschnitt mit einem abelschen Satz für Dirichlet-Reihen abschließen.

Satz 8.2. Sei $F(s) := \sum_{n \geq 1} a_n / n^s$ eine Dirichlet-Reihe, die für $\sigma > a$ konvergiert. Wenn es zwei Konstanten c und ω mit $\omega > -1$ gibt, sodass

$$\sum_{n \leq x} a_n = \left\{ \frac{c}{\Gamma(\omega + 1)} + o(1) \right\} x^a (\ln x)^\omega \quad (x \to \infty),$$

dann gilt

$$F(\sigma) = \frac{ca + o(1)}{(\sigma - a)^{\omega+1}} \quad (\sigma \to a+).$$

Beweis. Wir setzen $A(t) := \sum_{n \leq t} a_n$ und

$$G(h) := \int_0^{+\infty} e^{-(a+h)t} dA(t) \quad (h > 0).$$

Nachdem

$$\frac{c}{\Gamma(\omega + 1)} \int_0^{+\infty} e^{-(a+h)t} t^\omega d\{e^{at}\} = \frac{ca}{\Gamma(\omega + 1)} \int_0^{+\infty} t^\omega e^{-ht} dt = \frac{ca}{h^{\omega+1}}$$
ist, können wir

\[
G(h) - \frac{ca}{h^{\omega+1}} = (a + h) \int_0^{+\infty} e^{-(a+h)t} A(t) dt - \frac{ca}{h^{\omega+1}} = \int_0^{+\infty} e^{-(a+h)t} \left\{ (a+h)A(t) - \frac{ac}{\Gamma(\omega+1)} e^{at^\omega} \right\} dt.
\]

Nach Voraussetzung gibt es eine Funktion \(\varepsilon(t) \) mit \(\lim_{t \to \infty} \varepsilon(t) = 0 \), sodass

\[
(a + h)A(t) - \frac{ac}{\Gamma(\omega+1)} e^{at^\omega} = \varepsilon(t) e^{at^\omega} + O \left(heuristic \right)
\]

ist. Damit folgt, dass

\[
G(h) - \frac{ca}{h^{\omega+1}} = o \left(\frac{1}{h^{\omega+1}} \right) \quad (h \to 0+).
\]

\[\Box\]

8.2 Der Satz von Tauber

In seiner ursprünglichen Form ist der Satz von Tauber (1897) die exakte Umkehrung vom Satz von Abel.

Satz 8.3 (Tauber). Sei \(f(z) := \sum_{n \geq 0} a_n z^n \) eine Potenzreihe mit Konvergenzradius 1. Wir nehmen an, dass \(f(z) \) gegen einen Wert \(\ell \) konvergiert für \(z \to 1 \) mit \(z \in [0,1] \). Unter der zusätzlichen Voraussetzung, dass

\[
\sum_{n \leq x} na_n = o(x) \quad (x \to \infty),
\]

folgt, dass die Reihe \(\sum a_n \) konvergiert und ihre Summe \(\ell \) ist.

Beweis. Wir setzen

\[
A(x) := \sum_{n \leq x} a_n, \quad \alpha(x) := \int_0^x t dA(t) \quad (x > 0),
\]

\[
G(u) := \frac{e^{-u} - 1}{u}, \quad g(u) := -G'(u) = \frac{(1+u)e^{-u} - 1}{u^2} \quad (u > 0),
\]

\[
H(u) = \frac{e^{-u}}{u}, \quad h(u) := -H'(u) = \frac{(1+u)e^{-u}}{u^2} \quad (u > 0).
\]

(8.1)
Dann gilt

\[
f \left(e^{-1/x} \right) - A(x) = \sum_{n \leq x} a_n \left(e^{-\frac{n}{x}} - 1 \right) + \sum_{n > x} a_n e^{-\frac{n}{x}}
\]

\[
= \frac{1}{x} \sum_{n \leq x} a_n n x^{-1} \left(e^{-\frac{n}{x}} - 1 \right) + \frac{1}{x} \sum_{n > x} a_n n e^{-\frac{n}{x}}
\]

\[
= \frac{1}{x} \int_0^x G(t/x) t dA(t) + \frac{1}{x} \int_x^\infty H(t/x) t dA(t)
\]

\[
= \frac{1}{x} \int_0^x g(u) du \int_1^{\alpha(u)} a(t) dt + \frac{1}{x} \int_1^\infty h(u) \int_1^{u} a(t) dt
\]

\[
= \int_0^1 g(u) \frac{\alpha(u)}{x} du + \int_1^\infty g(u) du \frac{\alpha(u)}{x} + \int_1^\infty h(u) \frac{\alpha(u)}{x} du + \int_1^\infty h(u) du \frac{\alpha(u)}{x}
\]

\[
= \int_0^1 g(u) \frac{\alpha(u)}{x} du + (e^{-1} - 1) \frac{\alpha(x)}{x} + \int_1^\infty h(u) \frac{\alpha(u)}{x} du - e^{-1} \frac{\alpha(x)}{x}
\]

\[
= \int_0^1 g(u) \frac{\alpha(u)}{x} du + \int_1^\infty h(u) \frac{\alpha(u)}{x} du - \frac{\alpha(x)}{x}. \tag{8.2}
\]

Wir haben \(\alpha(u) / x \ll u \) gleichmäßig in \(x \), weil \(\alpha(x) / x \) gleichmäßig beschränkt ist auf \(\mathbb{R}^+ \). Nachdem \(\alpha(u) / x \) gegen 0 konvergiert für \(x \to \infty \) und ein fixes \(u \) und nachdem \(u g(u) \) und \(u h(u) \) integrierbar sind auf \([0, 1]\) beziehungsweise \([1, \infty] \), erhalten wir mit dem Satz der dominierten Konvergenz, dass

\[
f \left(e^{-1/x} \right) - A(x) = o(1) \quad (x \to \infty).
\]

Damit ist der Satz von Tauber bewiesen.

Wir sollten bemerken, dass die Taubersche Bedingung sogar notwendig ist, für die Konvergenz der \(\sum a_n \). In Wirklichkeit, mit derselben Notation wie im Beweis können wir mit einer abelschen Summation folgern, dass

\[
\frac{\alpha(x)}{x} = A(x) + \frac{1}{x} \int_0^x A(t) dt = \frac{1}{x} \int_0^x \{ A(x) - A(t) \} dt.
\]

Also \(A(x) \to \ell \) zieht sofort \(\alpha(x) = o(x) \) nach sich.

Wir können schließlich den Satz von Tauber in Integralform schreiben und, viel allgemeiner, in folgender Form.

Satz 8.4. Seien \(\omega \in \mathbb{R}^+ \) und \(A: \mathbb{R}^+ \to \mathbb{R} \) eine Funktion mit beschränkter Varietät auf jedem endlichen Intervall. Wir nehmen an, dass das Laplace-Stieltjes-Integral

\[
F(\sigma) := \int_0^\infty e^{-\sigma t} dA(t)
\]
8.3. Der Taubersche Satz von Newman

für $\sigma > 0$ konvergiert und $F(\sigma) = o(1/\sigma^\omega)$ ($\sigma \to 0^+$) ist. Dann sind die folgenden zwei Aussagen äquivalent

(i) $A(x) - A(0) = o(x^\omega)$ \hspace{1cm} ($x \to \infty$)

(ii) $\int_0^x t dA(t) = o(x^{\omega+1})$ \hspace{1cm} ($x \to \infty$).

Beweis. Die Berechnungen in (8.2) erlauben es uns, indem wir einen Grenzübergang durchführen, $F(\sigma) - A(1/\sigma) + A(0)$ als Funktion von $\alpha(x)$ wie in (8.1) definiert zu schreiben. Der Satz folgt wie oben durch Anwendung des Satzes von Lebesgue.

Bemerkung. Satz (8.2) entspricht dem Fall $\omega = 0$ von Satz 8.4: Die Hypothese $F(\sigma) = o(1)$ kann durch eine Änderung des Wertes $A(0)$ erreicht werden.

Wenn wir die Aussage von Satz 8.4 betrachten, können wir die Notation eines Tauberschen Satzes präzisieren. Sei eine reellwertige Funktion $\varphi(t, s)$ definiert auf $\mathbb{R}^+ \times S$ mit $S \subset \mathbb{C}$ gegeben. Wir definieren die φ-Transformation einer Funktion A von beschränkter Varietät auf jedem endlichen Intervall als

$$F(s) := \int_0^\infty \varphi(t, s) dA(t)$$

überall wo das Integral konvergiert. Weiters nehmen wir an, dass der folgenden Abelsche Satz wahr für s_0 im Abschluss von S: Wenn $\lim_{t \to \infty} A(t) = \ell$, dann konvergiert das Integral (8.3) für alle $s \in S$ und es gilt

$$\lim_{s \to s_0, s \in S} F(s) = \ell. \quad (8.4)$$

Unter diesen Umständen nennen wir einen Satz Taubersch, wenn er uns eine hinreichende Bedingung liefert um aus (8.4) zu folgern das $\lim_{t \to \infty} A(t) = \ell$.

8.3 Der Taubersche Satz von Newman

Satz 8.5 (Newman (1980); Zagier (1997)). Sei $f : [0, \infty[\to \mathbb{C}$ beschränkt und auf jedem Intervall $[0, a]$ Riemann-integrierbar. Dann stellt

$$F(z) := \int_0^\infty f(t) e^{-tz} dt$$

eine für $\Re z > 0$ holomorphe Funktion dar. Es sei F analytisch fortsetzbar auf $\Re z \geq 0$. Dann gilt

$$\int_0^\infty f(t) dt = F(0).$$

Beweis. Für $0 < T < \infty$ sei

$$F_T(z) = \int_0^T f(t) e^{-zt} dt.$$

Dann ist F_T offenbar ganz und es reicht zu zeigen, dass

$$F_T(0) = \int_0^T f(t) dt \xrightarrow{T \to \infty} F(0).$$
Oder, für alle $\varepsilon > 0$, dass
\[
|F_T(0) - F(0)| < \varepsilon
\] (8.5)
für $T \geq T_0(\varepsilon)$. Es werde $R > 0$ vorläufig beliebig gewählt, später in Abhängigkeit von ε genügend groß. Nach Voraussetzung gibt es ein $\delta = \delta(R) > 0$, sodass F holomorph ist für
\[
\Re z \geq -\delta, \ |z| \leq R.
\]
Sei $W = W(R)$ folgender geschlossener Weg, positiv umlaufen.

a) Der Halbkreis vom Radius R um $z_0 = 0$ in der rechten Halbebene (W^+).

b) Der Rechteckweg von iR nach $iR - \delta$, von $iR - \delta$ nach $-iR - \delta$ und von $-iR - \delta$ nach iR (W^-).

Dann bewirkt die Cauchysche Integralformel
\[
F(0) - F_T(0) = \frac{1}{2\pi i} \int_W \{F(z) - F_T(z)\} e^{Tz} \frac{1}{z} \, dz.
\]

Der eigentliche Beweistrick ist die folgende Modifikation
\[
F(0) - F_T(0) = \frac{1}{2\pi i} \int_W \{F(z) - F_T(z)\} e^{Tz} \left(\frac{1}{z} + \frac{z}{R^2}\right) \, dz. \quad (8.6)
\]

Dies ist richtig, weil die hinzugefügte Funktion
\[
z \mapsto \{F(z) - F_T(z)\} e^{Tz} \frac{z}{R^2}
\]
holomorph ist und daher ihr Integral über W verschwindet. Ohne diese Modifikation würden wir Schwierigkeiten bei der Abschätzung bekommen.

Nach Voraussetzung kann
\[
|f(t)| \leq A \quad \forall t \geq 0
\]
benutzt werden. Für $x = \Re z > 0$ und $|z| = R$ ist
\[
\frac{1}{z} + \frac{z}{R^2} = \frac{x - iy}{x^2 + y^2} + \frac{x + iy}{R^2} = \frac{2x}{R^2}
\]
und
\[
|F(z) - F_T(z)| = \left| \int_T^\infty f(t)e^{-zt} \, dt \right| \leq A \int_T^\infty e^{-xt} \, dt = \frac{A}{x} e^{-Tx}.
\]

Damit lässt sich der Integrand in (10.1) für $\Re z > 0$ im Betrag abschätzen durch
\[
\frac{A}{x} e^{-Tx} e^{Tx} \frac{2x}{R^2} = \frac{2A}{R^2}.
\]

Dies ergibt
\[
\left| \frac{1}{2\pi i} \int_{W^+} \{F(z) - F_T(z)\} e^{Tz} \left(\frac{1}{z} + \frac{z}{R^2}\right) \, dz \right| \leq \frac{A}{R}.
\]
8.4. DER PRIMZAHLSATZ

Bei $-F_T$ wird W^- deformiert zu dem Halbkreis vom Radius R in der linken Halbebene. Wie oben erhält man dort, dass

$$|F_T(z)| \leq A \int_0^T e^{-xt} \, dt < \frac{A e^{-T x}}{|x|}$$

und

$$\left| \frac{1}{2 \pi i} \int_{W^-} (-F_T(z)) e^{Tz} \left(\frac{1}{z} + \frac{z}{R^2} \right) \, dz \right| < \frac{A}{R}.$$

Es bleibt der Betrag von $F(z)$ über W^-. Die Funktion $F(z) \left(\frac{1}{z} + \frac{z}{R^2} \right)$ ist holomorph in einer Umgebung der Kurve W^- und somit durch $B = B(R)$ beschränkt. Das F-Integral über die Vertikale von W^- ist daher

$$\left| \int_{-T}^T F(z) \, dz \right| < \frac{1}{\pi} B R e^{-\delta T}.$$

Die Integrale über die Horizontalen sind

$$\left| \int_{-T}^0 F(z) \, dz \right| \leq 2B \int_{-T}^0 e^{xT} \, dx < \frac{2B}{T}.$$

Zusammenfassung liefert für beliebiges R und $T > 0$

$$|F(0) - F_T(0)| < \frac{2A}{R} + B(R) \left(R \frac{1}{\pi} e^{-\delta T} + \frac{2}{T} \right).$$

Als erstes wählen wir R so groß, dass $\frac{2A}{R} < \frac{\epsilon}{2}$. Für jetzt festgehaltenes R (und damit fixe $B(R)$ und δ) gilt $\lim_{T \to \infty} \left(\frac{B}{\pi} e^{-\delta T} + \frac{2}{T} \right) = 0$, für $T \geq T_0(\epsilon)$ ist daher der zweite Teil rechts $< \frac{\epsilon}{2}$. Damit ist nach (8.5) der Beweis geführt.

8.4 Der Primzahlsatz

Es gilt

$$\psi(x) = x \left(1 + o(1) \right) \text{ bzw.}$$

$$\pi(x) = \frac{x}{\ln x} \left(1 + o(1) \right).$$

Beweis. Wir zeigen nur die erste Aussage. Die Äquivalenz beider Aussagen wurde im ersten Teil gezeigt.

Für $\sigma = \Re s > 1$ und $N \in \mathbb{N}$ folgt mittels partieller Summation

$$\sum_{n \leq N} \Lambda(n) n^{-s} = \psi(N) N^{-s} + s \int_1^N \psi(u) u^{-s-1} \, du.$$

Die Substitution $t = \ln u$ macht das Integral zu

$$\int_0^{\ln N} \psi(e^t) e^{-t} e^{-t(s-1)} \, dt.$$
Für \(N \to \infty \) geht wegen \(\psi(N) = O(N) \) der Term \(\psi(N)N^{-s} \) gegen Null, \(\sum_{n \leq N} \Lambda(n)n^{-s} \) wird zu \(-\zeta'(s)/\zeta(s) \), das Integral konvergiert, also

\[
-\frac{\zeta'}{\zeta}(s) \cdot \frac{1}{s} = \int_0^\infty \frac{\psi(e^t)}{e^t} e^{-t(s-1)} dt \quad (\sigma > 1).
\]

Setzt man nun \(z = s - 1 \), dann folgt hieraus

\[
-\frac{1}{z+1} \frac{\zeta'}{\zeta}(z+1) = \int_0^\infty \frac{\psi(e^t)}{e^t} e^{-tz} dt \quad (\Re z > 0).
\]

In ähnlicher Weise erhält man

\[
\frac{1}{z+1} \zeta(z+1) = \int_0^\infty \frac{|e^t|}{e^t} e^{-tz} dt \quad (\Re z > 0).
\]

Nach Satz \ref{7.1} und Satz \ref{7.8} ist

\[
-\frac{\zeta'}{\zeta}(z+1) - \zeta(z+1)
\]
holomorph für \(\Re z \geq 0 \). Es kann somit im Hinblick auf den Tauber-Satz

\[
F(z) = -\frac{\zeta'}{\zeta}(z+1) - \zeta(z+1) = \int_0^\infty \left(\frac{\psi(e^t)}{e^t} - \frac{|e^t|}{e^t} \right) e^{-tz} dt
\]
geschrieben werden. Wegen \(\psi(e^t) \ll e^t \) ist \(f(t) = e^{-t}(\psi(t) - |e^t|) \) beschränkt (und offenbar auf jedem Intervall integrierbar). Es kann der Tauber-Satz angewendet werden:

\[
\int_0^\infty e^{-t} (\psi(t) - |e^t|)
\]
konvergiert. Ersetzt man \(|e^t| \) durch \(e^t - \{e^t\} \) und berücksichtigt die Konvergenz von

\[
\int_0^\infty e^{-t}\{e^t\} dt,
\]

dann hat man

\[
\int_0^\infty (\psi(t)e^{-t} - 1)
\]
konvergiert.

Aus (8.7) folgt, dass \(\psi(e^t)e^{-t} \to 1 \). Nehmen wir an, dass

\[
\limsup_{t \to \infty} \psi(e^t)e^{-t} > 1
\]

ist. Dies bedeutet, dass es eine gegen \(\infty \) divergierende Folge \((t_\nu) \) und ein \(\delta > 0 \) gibt, sodass

\[
\forall \nu: \psi(e^{t_\nu}) \geq e^{t_\nu}(1+\delta).
\]

Mit einem (kleinen) \(c > 0 \) folgt daraus für jede \(\nu \)

\[
\int_{t_\nu}^{t_\nu+c} (\psi(e^t)e^{-t} - 1) dt \geq \int_{t_\nu}^{t_\nu+c} (e^{t_\nu}(1+\delta)e^{-t_\nu-c}) dt - c = c((1+\delta)e^{-c} - 1).
\]

Dies ist \(\geq \frac{1}{2}c\delta \), wenn \(c = c(\delta) \) genügend klein gewählt wird. Wegen der Konvergenz des Integrals müsste \(\int_{t_\nu}^{t_\nu+c} \ldots \) gegen Null konvergieren.

Ähnlich argumentiert man bei der Annahme \(\liminf_{t \to \infty} \psi(e^t)e^{-t} < 1 \). Damit ist der Primzahlsatz in der \(\psi \)-Version gezeigt.
Kapitel 9

Die Riemannsche Zeta-Funktion II

9.1 Funktionalgleichung

Satz 9.1 (Poissonsche Summenformel). Sei \(f : \mathbb{R} \to \mathbb{C} \) eine stetig differenzierbare Funktion mit

\[
f(x) = O \left(|x|^{-2} \right) \quad \text{und} \quad f'(x) = O \left(|x|^{-2} \right) \quad \text{für} \quad |x| \to \infty
\]

und sei

\[
\hat{f}(t) := \int_{-\infty}^{\infty} f(x) e^{-2\pi i xt} \, dx
\]

die Fourier-Transformierte von \(f \). Dann gilt

\[
\sum_{n=-\infty}^{\infty} f(n) = \sum_{n=-\infty}^{\infty} \hat{f}(n).
\]

Bemerkung. Der Satz gilt auch unter schwächeren Voraussetzungen über die Funktion \(f \). Diese Form genügt uns aber. Die Bedingung \(f(x) = O \left(|x|^{-2} \right) \) garantiert die Existenz des Fourier-Integrals und der unendlichen Summe \(\sum f(n) \).

Beweis. Wir definieren eine Funktion \(F : \mathbb{R} \to \mathbb{C} \) durch

\[
F(x) := \sum_{n \in \mathbb{Z}} f(x + n).
\]

Nach der Voraussetzung über \(f \) konvergiert diese Reihe gleichmäßig auf \(\mathbb{R} \), ebenso die Reihe der Ableitungen. Daher ist \(F \) eine stetig differenzierbare Funktion. Außerdem gilt offensichtlich \(F(x + 1) = F(x) \), d.h. \(F \) ist periodisch mit der Periode 1. Wir können deshalb \(F \) in eine Fourier-Reihe

\[
F(x) = \sum_{n \in \mathbb{Z}} c_n e^{2\pi inx}
\]

entwickeln. Da \(F \) stetig differenzierbar ist, konvergiert die Fourier-Reihe gleichmäßig gegen
F. Für die Fourier-Koeffizienten gilt
\[c_n = \int_0^1 F(x)e^{-2\pi i nx} dx \]
\[= \sum_{k \in \mathbb{Z}} \int_0^1 f(x+k)e^{-2\pi i nx} dx = \sum_{k \in \mathbb{Z}} \int_k^{k+1} f(x)e^{-2\pi i nx} dx \]
\[= \int_{-\infty}^{\infty} f(x)e^{-2\pi i nx} dx = \hat{f}(n). \]
Es gilt also
\[F(x) = \sum_{n \in \mathbb{Z}} f(x+n) = \sum_{n \in \mathbb{Z}} \hat{f}(n)e^{2\pi inx}. \]
Die Reihen konvergieren sogar gleichmäßig auf \(\mathbb{R} \). Setzt man hierin \(x = 0 \), erhält man die Behauptung.

Beispiele. a) Wir wollen die Fourier-Transformierte der Funktion
\[f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto f(x) := e^{-\pi x^2} \]
berechnen. Es wird sich herausstellen, dass \(f \) seine eigene Fourier-Transformierte ist, d.h.
\[\hat{f}(t) = e^{-\pi t^2} \quad \text{für alle } t \in \mathbb{R}. \]
Es ist
\[\hat{f}(t) = \int_{-\infty}^{\infty} e^{-\pi x^2} e^{-2\pi i xt} dx. \]
Speziell für \(t = 0 \) gilt
\[\hat{f}(0) = \int_{-\infty}^{\infty} e^{-\pi x^2} dx = 2 \int_0^{\infty} e^{-\pi x^2} dx \]
\[= \frac{1}{\sqrt{\pi}} \int_0^{\infty} u^{-1/2} e^{-u} du = \frac{1}{\sqrt{\pi}} \Gamma(\frac{1}{2}) = 1. \]
Für \(t \neq 0 \) ist
\[\hat{f}(t) = \int_{-\infty}^{\infty} e^{-\pi x^2-2\pi i xt} dx = e^{-\pi t^2} \int_{-\infty}^{\infty} e^{-\pi (x+it)^2} dx. \]
Wir zeigen jetzt, dass
\[\int_{-\infty}^{\infty} e^{-\pi (x+it)^2} dx = \int_{-\infty}^{\infty} e^{-\pi x^2} dx = 1. \]
Daraus folgt dann unmittelbar die Behauptung. Um das zu beweisen, wählen wir ein \(R > 0 \) und integrieren die holomorphe Funktion \(f(z) := e^{-\pi z^2} \) über den Rand des Rechtecks mit den Ecken \(-R,R,R+it,-R+it\). Nach dem Residuensatz ist das gesamte Randintegral gleich 0, d.h.
\[\int_{-R}^{R} f(z) dz = \int_{-R+it}^{R+it} f(z) dz - \int_{R}^{R+it} f(z) dz + \int_{-R}^{-R+it} f(z) dz. \]
Man sieht unmittelbar, dass
\[\left| \int_{\pm R}^{\pm R+ia} f(z) \, dz \right| \to 0 \quad \text{für } R \to \infty. \]
Da
\[\int_{-R+it}^{R+it} f(z) \, dz = \int_{-R}^{R} e^{-\pi(x+it)^2} \, dx, \]
folgt die Behauptung mittels Grenzübergang \(R \to \infty \).

b) Für eine reelle Zahl \(\lambda > 0 \) betrachten wir die Funktion
\[f_\lambda : \mathbb{R} \to \mathbb{R}, \quad x \mapsto f_\lambda(x) := e^{-\pi \lambda x^2}. \]
Dann gilt für die Fourier-Transformierte, dass
\[\widehat{f_\lambda}(t) = \frac{e^{-\pi t^2/\lambda}}{\sqrt{\lambda}}. \]
Beweis hierfür. Nach Definition der Fourier-Transformation gilt
\[\widehat{f_\lambda}(t) = \int_{-\infty}^{\infty} e^{-\pi \lambda x^2} e^{-2\pi ixt} \, dx. \]
Mit den Substitutionen \(\xi = \sqrt{\lambda} x \) und \(\tau = t/\sqrt{\lambda} \) kann man dies auf a) zurückführen und erhält, dass
\[\widehat{f_\lambda}(t) = \int_{-\infty}^{\infty} e^{-\pi \xi^2} e^{-2\pi i\xi \tau} \, d\tau = \frac{e^{-\pi \tau^2}}{\sqrt{\lambda}} = \frac{e^{-\pi t^2/\lambda}}{\sqrt{\lambda}}. \]

Satz 9.2 (Funktionalgleichung der Theta-Reihe). Die Theta-Reihe ist für reelles \(x > 0 \) definiert durch
\[\theta(x) := \sum_{n \in \mathbb{Z}} e^{-\pi n^2 x}. \]
Sie genügt der folgenden Funktionalgleichung:
\[\theta \left(\frac{1}{x} \right) = \sqrt{x} \theta(x) \quad \text{für alle } x > 0, \]
d.h.
\[\sum_{n \in \mathbb{Z}} e^{-\pi n^2 x} = \frac{1}{\sqrt{x}} \sum_{n \in \mathbb{Z}} e^{-\pi n^2 / x}. \]

Bemerkung. Die Theta-Reihe und ihre sämtlichen Ableitungen konvergieren gleichmäßig auf jedem Intervall \([\varepsilon, \infty[, \varepsilon > 0\); daher ist \(\theta \) eine \(C^\infty \)-Funktion auf \(]0, \infty[\).

Beweis. Wir wenden die Poissonsche Summenformel auf die Funktion
\[f_\lambda : \mathbb{R} \to \mathbb{R}, \quad x \mapsto f_\lambda(x) := e^{-\pi \lambda x^2} \]
an. Dabei ist \(\lambda > 0 \) ein reeller Parameter. Da \(\widehat{f_\lambda}(t) = \frac{1}{\sqrt{\lambda}} e^{-\pi t^2/\lambda} \), folgt
\[\sum_{n \in \mathbb{Z}} e^{-\pi \lambda n^2} = \sum_{n \in \mathbb{Z}} \frac{e^{-\pi n^2 / \lambda}}{\sqrt{\lambda}}. \]
Schreibt man \(x \) statt \(\lambda \), ergibt sich die Behauptung des Satzes. \(\square \)
Korollar 9.3. Die im vorigen Satz definierte Funktion $\theta(x) = \sum_{n \in \mathbb{Z}} e^{-\pi n^2 x}$ genügt der Abschätzung

$$\theta(x) = O\left(\frac{1}{\sqrt{x}}\right) \quad \text{für} \quad x \to 0^+.$$

Lemma 9.4. Für alle $s \in \mathbb{C}$ mit $\Re(s) > 1$ gilt

$$\Gamma\left(\frac{s}{2}\right) \zeta(s) = \pi^{s/2} \int_0^\infty t^{s/2} \left(\sum_{n=1}^\infty e^{-\pi n^2 t}\right) \frac{dt}{t}.$$

Bemerkung. Die Funktion

$$\psi(t) := \sum_{n \geq 1} e^{-\pi n^2 t}$$

konvergiert für $t \to \infty$ exponentiell gegen 0. Es gilt $\theta(t) = 1 + 2\psi(t)$, d.h. $\psi(t) = \frac{1}{2}(\theta(t) - 1)$. Aus Korollar 9.3 folgt deshalb

$$\psi(t) = O\left(\frac{1}{\sqrt{t}}\right) \quad \text{für} \quad t \to 0^+.$$

Dies zeigt, dass das Integral für $\Re(s) > 1$ existiert.

Beweis. Wir gehen aus vom der Eulerschen Integral-Darstellung für $\Gamma(s/2)$,

$$\Gamma\left(\frac{s}{2}\right) = \int_0^\infty t^{s/2} e^{-t} \frac{dt}{t}, \quad (\Re(s) > 0),$$

und machen die Substitution $t = \pi n^2 t'$. Dabei ist n eine natürliche Zahl. Da $dt'/t' = dt/t$, erhalten wir (nachdem wir wieder t statt t' schreiben)

$$\Gamma\left(\frac{s}{2}\right) = n^{s} \pi^{s/2} \int_0^\infty t^{s/2} e^{-\pi n^2 t} \frac{dt}{t}.$$

Für $\Re(s) > 1$ gilt dann

$$\Gamma\left(\frac{s}{2}\right) \zeta(s) = \sum_{n \geq 1} \Gamma\left(\frac{s}{2}\right) n^{-s} = \sum_{n \geq 1} \pi^{s/2} \int_0^\infty t^{s/2} e^{-\pi n^2 t} \frac{dt}{t} = \pi^{s/2} \int_0^\infty t^{s/2} \left(\sum_{n \geq 1} e^{-\pi n^2 t}\right) \frac{dt}{t}.$$

Satz 9.5 (Funktionalgleichung der Zetafunktion). a) Die Funktion

$$\xi(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s),$$

lässt sich meromorph auf ganz \mathbb{C} fortsetzen. Die fortgesetzte Funktion ist holomorph bis auf zwei Pole erster Ordnung an den Stellen $s = 0$ und $s = 1$ und genügt der Funktionalgleichung

$$\xi(1 - s) = \xi(s).$$
b) Die Zetafunktion selbst lässt sich ebenfalls meromorph auf ganz \mathbb{C} fortsetzen mit einem einzigen Pol an der Stelle $s = 1$. Es gilt die Funktionalgleichung

$$\zeta(1 - s) = 2^{1-s} \pi^{-s} \Gamma(s) \cos \left(\frac{\pi s}{2} \right) \zeta(s).$$

Beweis.
1. Nach Lemma 9.4 gilt für $\Re(s) > 1$ mit $\psi(t) = \sum_{n \geq 1} e^{-\pi n^2 t}$

$$\xi(s) = \int_0^\infty t^{s/2} \psi(t) \frac{dt}{t} = \int_0^1 t^{s/2} \psi(t) \frac{dt}{t} + \int_1^\infty t^{s/2} \psi(t) \frac{dt}{t} \quad (9.1)$$

Aus der Funktionalgleichung für die Thetafunktion folgt für $\psi(t) = \frac{1}{2} (\theta(t) - 1)$

$$\psi(t) = t^{-1/2} \psi(1/t) - \frac{1}{2} (1 - t^{-1/2}).$$

Wir setzen dies in das Integral von 0 bis 1 ein und erhalten

$$\int_0^1 t^{s/2} \psi(t) \frac{dt}{t} = \int_0^1 t^{(s-1)/2} \psi \left(\frac{1}{t} \right) \frac{dt}{t} + \frac{1}{2} \int_0^1 (t^{(s-1)/2} - t^{s/2}) \frac{dt}{t}. \quad (9.2)$$

Das letzte Integral kann man explizit berechnen (man beachte, dass $\Re(s) > 1$):

$$\frac{1}{2} \int_0^1 (t^{(s-1)/2} - t^{s/2}) \frac{dt}{t} = \frac{1}{s-1} - \frac{1}{s}.$$

Im ersten Integral auf der rechten Seite von (9.2) machen wir die Substitution $t' = 1/t$ und erhalten

$$\int_0^1 t^{(s-1)/2} \psi \left(\frac{1}{t} \right) \frac{dt}{t} = \int_1^\infty t^{(1-s)/2} \psi(t) \frac{dt}{t}.$$

Setzt man alles in (9.1) ein, ergibt sich

$$\xi(s) = \int_0^\infty t^{s/2} \psi(t) \frac{dt}{t} = \int_1^\infty (t^{(1-s)/2} + t^{s/2}) \psi(t) \frac{dt}{t} + \left(\frac{1}{s-1} - \frac{1}{s} \right). \quad (9.3)$$

Da $\psi(t)$ für $t \to \infty$ exponentiell gegen 0 geht, konvergiert das Integral auf der rechten Seite gegen eine auf ganz \mathbb{C} holomorphe Funktion $g(s)$. Somit liefert (9.3) eine Fortsetzung von $\xi(s)$ als meromorphe Funktion auf \mathbb{C} mit Polen 1. Ordnung an den Stellen $s = 1$ und $s = 0$. Da die Darstellung (9.3) invariant unter der Abbildung $s \mapsto 1 - s$ ist, folgt $\xi(1 - s) = \xi(s)$, d.h. Teil a) des Satzes ist bewiesen.

2. Wegen

$$\zeta(s) = \frac{\pi^{s/2}}{\Gamma(s/2)} \xi(s)$$

lässt sich auch die Zetafunktion meromorph nach ganz \mathbb{C} fortsetzen. Die Funktion $s \mapsto \frac{1}{\Gamma(s/2)}$ ist auf ganz \mathbb{C} holomorph und hat eine Nullstelle 1. Ordnung bei $s = 0$, die sich gegen die Pole der Funktion $\xi(s)$ weghebt. Deshalb ist $\zeta(s)$ holomorph in \mathbb{C} bis auf den Pol 1. Ordnung bei $s = 1$. Aus der Funktionalgleichung von ξ können wir nun die Funktionalgleichung der Zetafunktion ableiten:

$$\pi^{-(1-s)/2} \Gamma \left(\frac{1-s}{2} \right) \zeta(1-s) = \pi^{-s/2} \Gamma \left(\frac{s}{2} \right) \zeta(s)$$
ergibt

$$\zeta(1-s) = \pi^{1/2-s} \Gamma \left(\frac{s}{2} \right) \Gamma \left(\frac{1-s}{2} \right)^{-1} \zeta(s). \quad (9.4)$$

Nun benutzen wir zwei Formeln aus der Theorie der Gammafunktion

\begin{align*}
(a) & \quad \frac{1}{\Gamma(s)\Gamma(1-s)} = \frac{\sin(\pi s)}{\pi} \quad \text{(Euler)} \\
(b) & \quad \Gamma \left(\frac{z}{2} \right) \Gamma \left(\frac{1+z}{2} \right) = 2^{1-z} \sqrt{\pi} \Gamma(z) \quad \text{(Legendre)}.
\end{align*}

Aus (a) folgt

$$\Gamma \left(\frac{1-s}{2} \right)^{-1} \Gamma \left(\frac{1+s}{2} \right)^{-1} = \frac{\sin \left(\frac{\pi(1+s)}{2} \right)}{\pi} = \frac{\cos \left(\frac{\pi s}{2} \right)}{\pi}.$$

Damit lässt sich die Formel (9.4) umformen zu

$$\zeta(1-s) = \pi^{-1/2-s} \Gamma \left(\frac{s}{2} \right) \Gamma \left(\frac{1+s}{2} \right) \cos \left(\frac{\pi s}{2} \right) \zeta(s),$$

woraus unter Benutzung von (b) folgt

$$\zeta(1-s) = 2^{1-s} \pi^{-s} \Gamma(s) \cos \left(\frac{\pi s}{2} \right) \zeta(s).$$

\[\square\]

Korollar 9.6. \textit{a) Für jede ganze Zahl } k > 0 \textit{ gilt}

$$\zeta(-2k) = 0.$$
\textit{Dies sind die einzigen Nullstellen der Zetafunktion in der Halbebene } \Re(s) < 0. \textit{ Man nennt diese Nullstellen die trivialen Nullstellen der Zetafunktion.}

\textit{b) } \zeta(0) = -\frac{1}{2}.

\textit{Beweis. a) Wir benutzen die Funktionalgleichung}

$$\zeta(1-s) = 2^{1-s} \pi^{-s} \Gamma(s) \cos \left(\frac{\pi s}{2} \right) \zeta(s).$$

\(\Re(1-s) < 0\) ist gleichbedeutend mit \(\Re(s) > 1\). Da \(\zeta(s) \neq 0\) für \(\Re(s) > 1\), kommen die einzigen Nullstellen der rechten Seite in der Halbebene \(\Re(s) > 1\) von der Cosinus-Funktion. Nun ist

$$\cos \left(\frac{\pi s}{2} \right) = 0 \iff s = 1 + 2k \quad \text{mit } k \in \mathbb{Z}.$$

Daraus folgt die Behauptung.
b) Wir schreiben die Funktionalgleichung in der Form \(\zeta(1-s) = f_1(s)f_2(s) \) mit
\[
f_1(s) := 2^{1-s}\pi^{-s}\Gamma(s) \quad \text{und} \quad f_2(s) := \cos\left(\frac{\pi s}{2}\right) \zeta(s).
\]
f_1 ist holomorph in einer Umgebung von \(s = 1 \) und \(f_1(1) = \frac{1}{\pi} \). Die Funktion \(f_2 \) ist ebenfalls holomorph in einer Umgebung von \(s = 1 \), da der Pol der Zetafunction von der Nullstelle des Cosinus aufgehoben wird. Um \(f_2(1) \) zu berechnen, bestimmen wir die ersten Glieder der Taylor- bzw. Laurent-Entwicklung der Faktoren.

\[
cos\left(\frac{\pi s}{2}\right) = -\frac{\pi}{2}(s-1) + O(s-1)^3 \quad \text{und} \quad \zeta(s) = \frac{1}{s-1} + \gamma + O(s-1).
\]

Multipliziert man beide Ausdrücke, erhält man \(f_2(s) = -\frac{\pi}{2} + O(s-1) \), d.h. \(f_2(1) = -\frac{\pi}{2} \).

Daher gilt \(\zeta(0) = f_1(1)f_2(1) = -\frac{1}{2} \).

\[\square\]

9.2 Die Produktentwicklung von Hadamard

Die Ordnung einer ganzen Funktion \(f \) ist definiert als das kleinste \(\alpha \in [0, +\infty] \) sodass \(f(z) \ll \varepsilon \exp(|z|^\alpha+\varepsilon) \) für alle \(\varepsilon > 0 \) gilt. Hadamard hat gezeigt, dass sich ganze Funktionen mit endlicher Ordnung als Produkt schreiben lassen. Wie wir sehen werden, hat \((s^2-s)\xi(s) \) Ordnung 1. Die Produktformel von \(\xi(s) \) wird uns eine Partialbruchzerlegung von \(\frac{\zeta'(s)}{\zeta(s)} \) liefern, die wir wiederum in einer Kontur-Integration manipulieren um \(\psi(x) \) auszurechnen.

Die Hadamard’sche Produktformel gilt für allgemeine ganze Funktion mit gegebener Ordnung.

Satz 9.7. Sei \(f \) eine ganze Funktion der Ordnung \(\alpha < \infty \). Nehmen wir an, dass \(f \) nicht identisch auf \(\mathbb{C} \) verschwindet. Dann besitzt \(f \) die Produktdarstellung
\[
f(z) = z^re^{g(z)} \prod_{k=1}^{\infty} \left(1 - \frac{z}{z_k}\right) \exp\left(\sum_{m=1}^{a} \frac{1}{m} \left(\frac{z}{z_k}\right)^m\right) \quad (9.5)
\]

wobei \(a = \lfloor \alpha \rfloor \), \(r \) die Vielfachheit der Nullstelle von \(f \) in \(z = 0 \), die \(z_k \) die anderen Nullstellen von \(f \) mit Vielfachheit, \(g \) ein Polynom vom Grad höchstens \(a \) ist und das Produkt konvergiert gleichmäßig auf beschränkten Teilmengen von \(\mathbb{C} \). Darüber hinaus gilt für \(R > 1 \), dass
\[
\#\{k: |z_k| < R\} \ll \varepsilon R^{\alpha+\varepsilon}. \quad (9.6)
\]

Umgekehrt nehmen wir an \(r \) sei eine nicht-negative ganze Zahl, \(g \) ein Polynom vom Grad höchstens \(a \) und \(z_k \) sind die von Null verschiedenen Nullstellen, sodass \(|z_k| < R \) höchstens für \(O(\varepsilon(R^{\alpha+\varepsilon}) \) Wahlen von \(k \). Dann definiert die rechte Seite von (9.5) eine ganze Funktion der Ordnung höchstens \(\alpha \).

Beweis. Um dies zu beweisen zeigen wir zunächst.

Lemma 9.8. Eine ganze Funktion \(f \) hat endliche Ordnung und keine Nullstellen genau dann, wenn \(f = e^g \) für ein Polynom \(g \) ist.
Wenn wir dies nun auf die Funktion \(f_k \) auslegern, also
\[h(z) = g - g(0), \quad \text{so dass} \quad h(0) = 0 \quad \text{und} \quad M = \sup_{|z| \leq 2R} |h(z)|. \]
Nach Voraussetzung ist \(M \ll R^{\alpha+\varepsilon} \) für großes \(R \). Dann ist
\[h_1 := h/(2M - h) \] analytisch auf der geschlossenen Scheibe \(D := \{ z \in \mathbb{C} : |z| \leq 2R \} \) mit \(h_1(0) = 0 \) und \(|h_1(z)| \leq 1 \) auf \(D \). Betrachten wir nun die analytische Funktion \(\phi(z) := 2Rh_1(z)/z \) auf \(D \). Auf dem Rand der Scheibe gilt, \(|\phi(z)| \leq 1 \). Daher folgt mit dem Maximumsatz, dass dies auch für alle \(z \in D \) gilt. Im speziellen, wenn \(|z| \leq R \) ist, dann ist \(|h_1(z)| \leq \frac{1}{2} \). Aber dann ist \(|h(z)| \leq 2M \). Daher muss \(|g(z)| \leq 2M + g(0) \ll |z|^{\alpha+\varepsilon} \) für großes \(|z| \) und somit ist \(g \) ein Polynom in \(z \) vom Grad höchstens \(\alpha \) wie gefordert.

Wir vereinfachen den Satz zu diesem Lemma indem wir eine gegebenen Funktion \(f \) von endlicher Ordnung durch ein Produkt \(P(z) \) mit denselben Nullstellen wie \(f \) dividieren. Um zu zeigen, dass dieses Produkt konvergiert, benötigen wir die Ungleichung von Jensen.

Satz 9.9. Sei \(f_0 \) eine analytische Funktion auf der Kreisscheibe \(|z| \leq R\). Dann
\[
|f_0(0)| \leq \prod_{\zeta} \frac{|\zeta|}{R} \cdot \sup_{|z|=R} |f(z)|, \tag{9.7}
\]
wobei das Produkt über alle Nullstellen \(\zeta \) (mit Vielfachheit) von \(f_0 \) in der Kreisscheibe läuft.

Beweis. Seien \(z_1, z_2, \ldots \) die Nullstellen (mit Vielfachheit) von \(f_0 \) mit ansteigendem Modulus
\[
0 < |z_1| \leq |z_2| \leq |z_3| \leq \cdot \cdot \cdot .
\]
Für \(R > 0 \) sei \(n(R) \) die linke Seite von (9.6). Daher ist \(n(R) = k \) genau dann, wenn \(|z_k| < R < |z_{k+1}| \). Betrachten wir zuerst \(f_0 \) in \(|z| < 1\). Sei \(\phi(z) \) das Blaschke-Produkt \(\prod_{k=1}^{n(1)} (z - z_k)/(1 - z_k) \). Das ist eine rationale Funktion mit denselben Nullstellen wie \(f_0 \) im Einheitskreis, aber mit \(|\phi(z)| = 1 \) auf \(|z| = 1\). Dann ist \(f_1 := f_0/\phi(z) \) analytisch auf \(|z| \leq 1 \) und \(|f(z)| = |f_0(z)| = |f_1(z)| \) auf dem Rand \(|z| = 1\). Daher folgt mit dem Maximumsatz \(|f_1(0)| \leq \max_{|z|=1} |f(z)| \). Also
\[
|f_0(0)| = |\phi(0)f_1(0)| = \prod_{k=1}^{n(1)} |z_k| \cdot |f_1(0)| \leq \prod_{k=1}^{n(1)} |z_k| \cdot \max_{|z|=1} |f(z)| .
\]
Wenn wir dies nun auf die Funktion \(f_0(Rz) \), deren Nullstellen im Einheitskreis \(z_k/R \) für \(k \leq n(R) \) sind, erhalten wir die Ungleichung von Jensen.

Sei nun \(f_0 = f/z^r \). Eine Anwendung der Ungleichung von Jensen und logarithmieren ergibt
\[
\log \max_{|z|=R} |f(z)| \geq r \log R + \log |f_0(0)| + \sum_{k=1}^{n(R)} \log \frac{R}{|z_k|} = r \log R + \log |f_0(0)| + \int_0^R n(r) \frac{dr}{r}.
\]
Wenn \(f \) höchstens Ordnung \(\alpha < \infty \) besitzt, dann ist \(\log \max_{|z|=R} |f(z)| \ll_{\varepsilon} R^{\alpha + \varepsilon} \), und wir schließen, dass
\[
n(R) = \int_{R}^{eR} n(R) \frac{dR}{R} \leq \int_{0}^{eR} n(r) \frac{dR}{r} \ll_{\varepsilon} R^{\alpha + \varepsilon}.
\]
Damit haben wir (9.6) gezeigt. Es folgt, dass \(\sum_{k=1}^{\infty} |z_k|^{-\beta} \) konvergiert, sobald \(\beta > \alpha \) ist, denn die Summe ist
\[
\int_{0}^{\infty} r^{-\beta} \, dn(r) = \beta \int_{|z|=1}^{\infty} r^{-\beta-1} n(r) \, dr \ll \int_{|z|=1}^{\infty} r^{\alpha + \varepsilon - \beta - 1} \, dr < \infty
\]
für jedes positive \(\varepsilon < \beta - \alpha \). Daher konvergiert das Produkt
\[
P(z) := z^r \prod_{k=1}^{\infty} \left(1 - \frac{z}{z_k} \right) \exp \left(\sum_{m=1}^{a} \frac{1}{m} \left(\frac{z}{z_k} \right)^m \right)
\]
(9.8) für alle \(z \in \mathbb{C} \) und eine Permutation der Nullstellen \(z_k \) hat keine Auswirkung. Darüberhinaus ist die Konvergenz gleichmäßig in beschränkten Teilmengen von \(\mathbb{C} \), weil auf \(|z| \leq R \) gilt, dass
\[
\log \left(1 - \frac{z}{z_k} \right) + \sum_{m=1}^{a} \frac{1}{m} \left(\frac{z}{z_k} \right)^m \ll \left(\frac{z}{z_k} \right)^{a+1} \ll z_k^{-a-1}
\]
(9.9) gleichmäßig sobald \(k > n(2R) \). Daher ist \(P(z) \) eine ganze Funktion mit denselben Nullstellen und Vielfachkeiten wie \(f \).

Damit ist \(f/P \) eine ganze Funktion ohne Nullstellen. Wir behaupten, dass sie außerdem die Ordnung höchstens \(\alpha \) besitzt und darüber \(\exp(g(z)) \) für ein Polynom \(g \) vom Grad höchstens \(a \). Das wäre klar, wenn wir zeigen könnten, dass
\[
\frac{1}{P(z)} \ll_{\varepsilon} \exp \left(|z|^{\alpha + \varepsilon} \right).
\]
Aber eine solche Ungleichung kann nicht gelten auf Grund der Nullstellen von \(P \). Es genügt aber zu zeigen, dass für jedes \(R > 0 \) eine Schranke der Form
\[
\frac{1}{P(z)} \ll_{\varepsilon} \exp \left(R^{\alpha + \varepsilon} \right)
\]
auf einem Kreis \(|z| = r \) mit \(r \in (R, 2R) \) gilt. Dann wäre nämlich \(|f(z)/P(z)| \ll_{\varepsilon} \exp \left(R^{\alpha + \varepsilon} \right) \) für alle \(z \) auf dem Kreis und mit dem Maximumsprinzip auch auf \(|z| = R \).

Wir schreiben \(P = z^r P_1 P_2 \), wobei \(P_1 \) beziehungsweise \(P_2 \) das Produkt aus (9.8) ist für \(k \leq n(4R) \) beziehungsweise \(k > n(4R) \). Wir können den Faktor \(z^r \) vernachlässigen, da sein Modulus größer als 1 ist, sobald \(R > 1 \) ist. Der \(k \)-te Faktor von \(P_2(z) \) ist ein \(\exp \left(\mathcal{O} \left(|z/z_k|^{a+1} \right) \right) \) nach (9.9). Also folgt, dass
\[
\log |P_2(z)| \ll R^{a+1} \sum_{k>n(4R)} |z_k|^{-a-1} \ll R^{a+1} \int_{4R}^{\infty} r^{-a-1} \, dr(n(r)) \ll_{\varepsilon} R^{\alpha + \varepsilon},
\]
wobei partieller Integration und \(n(r) \ll_{\varepsilon} r^{\alpha + \varepsilon} \) im letzten Schritt verwendet haben (nachrechnen). Nun wenden wir uns \(P_1 \) zu. Nachdem \(P_1 \) ein endliches Produkt ist, schreiben wir es als \(e^{h(z)} \prod_{k=n(4R)}^{(4n(4R))} (1 - z/z_k) \), wobei \(h(z) \) das Polynom
\[
h(z) = \sum_{k=1}^{n(4R)} \sum_{m=1}^{a} \frac{1}{m} \left(\frac{z}{z_k} \right)^m
\]
vom Grad höchstens \(a\) ist. Daher ist \(h(z) \ll R^a \sum_{k \leq n(4R)} |z_k|^{-a}\), womit wir sofort \(h(z) \ll R^{a+\varepsilon}\) erhalten. (Dies sollte wiederum überprüft werden.) Wir bemerken, dass die Schranken für den absoluten Betrag von \(\log |P_2(z)|\) und \(h(z)\) untere und obere Schranken für \(|P_2(z)|\) und \(\exp(h(z))\) liefern.) Bisher gelten unsere unteren Schranken für alle Faktoren von \(P(z)\) mit \(z\) im Kreisring \(R < |z| < 2R\). Aber wir können nicht erwarten, dass dies auch wahr ist für \(P_3(z) := \prod_{k \leq n(4R)} (1 - z/z_k)\), weil dieses Produkt in einigen Punkten des Kreisringes verschwinden kann. Hingegen können wir zeigen, dass es für ein \(r\) funktioniert, indem wir den Mittelwert abschätzen:

\[
-\frac{1}{R} \int_R^{2R} \min_{|z|=r} |P_3(z)| \, dr \leq -\sum_{k=1}^{n(4R)} \frac{1}{R} \int_R^{2R} \log \left| 1 - \frac{r}{|z_k|} \right| \, dr.
\]

Das Integral ist elementar, wenn auch nicht schön, und wir können wiederum schließen, dass es \(\ll R^{a+\varepsilon}\) ist. Das beweist die untere Schranke für ein \(r \in (R, 2R)\) und wir haben schließlich die Formel (9.5) gezeigt.

Um den Beweis abzuschließen, müssen wir noch die Umkehrung zeigen. (9.5) konvergiert zu einer ganzen Funktion mit Ordnung höchstens \(\alpha\) unter den gegebenen Voraussetzungen an \(r\), \(g\) und \(z_k\). Die Konvergenz haben wir bereits gezeigt und die obere Schranke für \(|f(z)|\) folgt mittels (9.9).

Wir berechnen die logarithmische Ableitung von (9.5) und erhalten

\[
\frac{f'}{f}(z) = g'(z) + \frac{P'}{P}(z) = g'(z) + \frac{r}{z} + \sum_{k=1}^{\infty} \left[\frac{1}{z - z_k} + \sum_{m=1}^{a} \frac{z^{m-1}}{z_k^m} \right] = g'(z) + \frac{r}{z} + \sum_{k=1}^{\infty} \frac{(z/z_k)^{a}}{z - z_k}.
\]

Außerdem bemerken wir, wenn \(\alpha > 0\) und \(\sum_k |z_k|^{-\alpha} < \infty\) ist, dann gibt es eine Konstante \(C\), sodass \(f(z) \ll \exp(C |z|^\alpha)\). Dies folgt von der Existenz einer Konstante \(C_\alpha\), sodass

\[
(1 - w) \exp \left(\sum_{m=1}^{a} \frac{w^m}{m} \right) \ll \exp(C_\alpha |w|^{\alpha})
\]

für alle \(w \in \mathbb{C}\). Andererseits, wenn \(f(z)\) eine Funktion der Ordnung \(\alpha\) ist, die schneller wächst als \(\exp(C |z|^\alpha)\) für alle \(C\), dann divergiert \(\sum_k |z_k|^{-\alpha}\). Dies passiert zum Beispiel für \(f(s) = 1/\Gamma(s)\). Wie wir sehen werden, ist das ebenfalls wahr für \(f(s) = (s^2 - s)\xi(s)\). Damit folgt, dass \(\xi\) und damit auch \(\zeta\) unendlich viele nicht-triviale Nullstellen \(\rho\) mit Realteil in \([0,1]\) hat und dass \(\sum_\rho |\rho|^{-1}\) sogar divergiert.

9.3 Die Produktformeln für \(\xi\) und \(\zeta\)

Wir zeigen zunächst, dass \((s^2 - s)\xi(s)\) eine ganze Funktion der Ordnung 1 ist.

Lemma 9.10. Es gibt eine Konstante \(C\), sodass \((s^2 - s)\xi(s) \ll \exp(C |s| \log |s|)\), aber keine Konstante \(C'\), sodass \((s^2 - s)\xi(s) \ll \exp(C' |s|)\).
Beweis. Dank der Funktionalgleichung $\xi(s) = \xi(1-s)$ genügt es, $s = \sigma + it$ mit $\sigma \geq \frac{1}{2}$ zu betrachten. Aus der Stirling-Formel folgt für fixes $\sigma \in \mathbb{R}$, dass

$$\Re (\log \Gamma(\sigma + it)) = \left(\sigma - \frac{1}{2} \right) \log |t| - \frac{\pi}{2} |t| + C_\sigma + O_\sigma (|t|^{-1}).$$

Für $\sigma > 1$ folgt aus dem Eulerprodukt von $\zeta(s)$, dass $\log |\zeta(\sigma + it)| = O_\sigma(1)$. Tatsächlich haben wir die Schranken

$$\zeta(\sigma) \geq |\zeta(\sigma + it)| > \prod_p \left(1 + p^{-s} \right)^{-1} = \frac{\zeta(2\sigma)}{\zeta(\sigma)}.$$

Damit ist $|\zeta(\sigma + it)|$ bis auf einen konstanten Faktor wie $|t|^{(\sigma-1)/2} e^{-\pi|t|/4}$ für $|t|$ groß. Dies Abschätzung für $|\zeta(\sigma + it)|$ zeigt bereits, dass $\left| (s^2 - s)\zeta(s) \right|$ schneller wächst als $\exp \left(C'|s| \right)$ für jedes C'. Zusammen mit der Funktionalgleichung zeigt das, dass für jedes $\sigma < 0$ ein C_σ gibt, sodass $|\zeta(\sigma + it)|$ bis auf einen konstanten Faktor von C_σ wie $|t|^{1/2-\sigma}$ für $|t|$ groß ist.

Um das Lemma zu zeigen, bleibt nur noch die Schranke für $\zeta(s)$ für s im oder in der Nähe vom kritischen Streifen. Von unserer Analyse der Zetafunktion im kritischen Streifen erhalten wir

$$\zeta(s) = \sum_{n=1}^{N-1} n^{-s} + \frac{N^{1-s}}{s-1} + \sum_{n=N}^{\infty} \int_n^{n+1} \left(n^{-s} - x^{-s} \right) dx,$$

was für großes t und N ein $O \left(N^{1-\sigma} + |t|^N \right)$ ist, gleichmäßig zumindest für $\sigma \geq \frac{1}{2}$. Wenn wir $N = |t| + O(1)$ setzen, bekommen wir, dass $\zeta(\sigma + it) \ll |t|^{1-\sigma}$ ist für $\sigma \geq \frac{1}{2}$ und $|t| > 1$.

Zusammen mit Stirlings Approximation schließt das den Beweis unseres Lemmas. \(\square \)

Bemerkung. Natürlich wollen wir N wählen, sodass die Schranke bestmöglich wird, d.h. so dass wir $N^{1-\sigma} + |t| N^{-\sigma}$ minimieren. In Analysis haben wir gelernt, dass man dies erreicht, indem man die Ableitung Null setzt. Dabei würden wir N proportional zu $|t|$ bekommen. Aber wir setzten die Konstante willkürlich 1, obwohl wir durch eine andere Wahl $N^{1-\sigma} + |t| N^{-\sigma}$ verkleinert hätten. Allgemein, wenn wir uns mit Abschätzungen von Summen vom Typ $O \left(f(N) + g(N) \right)$, von denen die eine wachsend und die andere fallend ist, herumschlagen, dann wählen wir den Parameter N so, dass $f(N) = g(N)$ (oder, wenn N eine ganze Zahl sein muss, so dass $f(N)$ und $g(N)$ fast gleich sind). Das ist viel einfacher und weniger fehleranfällig wie mit Ableitungen herumzurechnen und liefert das Minimum bis auf einen Faktor 2, der aber gut genug ist, wenn wir mit O-Termen rechnen.

Dank unserer Produktformel für ganze Funktionen wissen wir, dass $\xi(s)$ eine Produktentwicklung besitzt:

$$\xi(s) = \frac{e^{A + Bs}}{s^2 - s} \prod_\rho \left(1 - \frac{s}{\rho} \right) e^{s/\rho} \tag{9.10}$$

für bestimmte Konstanten A und B, wobei das Produkt über alle Nullstellen ρ von ξ (das sind die nicht-trivialen Nullstellen von ζ) mit Vielfachheit. Darüberhinaus ist $\sum_\rho |\rho|^{-1-\varepsilon} < \infty$ für alle $\varepsilon > 0$, aber $\sum_\rho |\rho|^{-1} = \infty$. Die logarithmische Ableitung von (9.10) ist

$$\frac{\zeta'}{\zeta}(s) = B - \frac{1}{s} - \frac{1}{s-1} + \sum_\rho \left(\frac{1}{s-\rho} + \frac{1}{\rho} \right).$$
Nachdem \(\xi(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s) \) ist, bekommen wir auch einen Produktformel für \(\zeta(s) \) und eine Partialbruchzerlegung für ihre logarithmische Ableitung:

\[
\frac{\zeta'}{\zeta}(s) = B - \frac{1}{s-1} + \frac{1}{2} \log \pi - \frac{1}{2} \frac{\Gamma'}{\Gamma} \left(\frac{s}{2} + 1 \right) + \sum_{\rho} \left(\frac{1}{s - \rho} + \frac{1}{s + \rho} \right).
\]
(9.11)

Wir haben von \(\Gamma(s/2) \) nach \(\Gamma(s/2 + 1) \) verschoben um den Term \(-1/s\) zu absorbieren; denn \(\zeta(s) \) hat keinen Pol oder Nullstelle bei \(s = 0 \).

Nachdem die Nullstellen \(\rho \) von \(\xi(s) \) auf einen kleinen Streifen beschränkt sind, ist es viel einfacher genaue Informationen über deren Verteilung als über die Konvergenz und Divergenz von \(\sum_{\rho} |\rho|^{-1+\varepsilon} \) und \(\sum_{\rho} |\rho|^{-1} \) zu bekommen. Sei \(N(T) \) die Anzahl der Nullstellen im Rechteck \((\sigma,t) \in [0,1] \times [0,T] \), was beinahe die Hälfte von dem wäre, was wir \(n(T) \) im Zusammenhang mit der allgemeinen Produktformel für \((s^2 - s)\xi(s)\) genannt haben.

Satz 9.11 (von Mangoldt). Für \(T \to \infty \) gilt

\[
N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + \mathcal{O}(\log T).
\]
(9.12)

Beweis. Wir dürfen annehmen, dass \(T \) nicht dem Imaginärteil einer Nullstelle von \(\zeta(s) \) entspricht. Dann ist

\[
2N(T) - 2 = \frac{1}{2\pi i} \oint_{C_R} \frac{\xi'(s)ds}{\zeta(s)} = \frac{1}{2\pi i} \oint_{C_R} \text{d}\{\log \xi(s)\} = \frac{1}{2\pi} \oint_{C_R} \text{d}\{\Im \log \xi(s)\},
\]

wobei \(C_R \) der Rand des Rechtecks \((\sigma,t) \in [-1,2] \times [-T,T] \) ist. Nachdem \(\xi(s) = \xi(1-s) = \overline{\xi(s)} \) können wir die Symmetrie nutzen und das Integral über einen Viertel von \(C_R \) berechnen.

Wir benutzen das obere rechte Viertel von \(2 \) nach \(2 + iT \) nach \(1/2 + iT \). Bei \(s = 2 \) ist \(\log \xi(s) \) reell und wir erhalten

\[
\pi(N(T) - 1) = \Im \log \left(\frac{1}{2} + iT \right) = \Im \left(\log \Gamma \left(\frac{1}{4} + \frac{iT}{2} \right) \right) - \frac{T}{2} \log \pi + \Im \left(\log \left(\frac{1}{2} + iT \right) \right).
\]

Mit Sterlings Formel ist der erste Term ein \(\mathcal{O}(T^{-1}) \) weg von

\[
\Im \left(\left(\frac{iT}{2} - \frac{1}{4} \right) \log \left(\frac{iT}{2} + \frac{1}{4} \right) \right) - \frac{T}{2} = \frac{T}{2} \log \left| \frac{iT}{2} + \frac{1}{4} \right| - \frac{1}{4} \Im \log \left(\frac{iT}{2} + \frac{1}{4} \right) - \frac{T}{2} = \frac{T}{2} \left(\log \frac{T}{2} - 1 \right) + \mathcal{O}(1).
\]

Damit ist \((9.12) \) gleichbedeutend mit

\[
\Im \log \zeta \left(\frac{1}{2} + iT \right) \ll \log T.
\]
(9.13)

Wir wollen zeigen, dass für \(s = \sigma + it \) mit \(\sigma \in [-1,2], \ |t| > 1 \) gilt, dass

\[
\frac{\zeta'}{\zeta}(s) = \sum_{|\Im(s-\rho)| < 1} \frac{1}{s - \rho} + \mathcal{O}(\log |t|),
\]
(9.14)

und dass die Summe höchstens \(\mathcal{O}(\log |t|) \) Terme besitzt, wovon unsere gewünschte Abschätzung mittels Integration von \(s = 2 + iT \) nach \(s = 1/2 + iT \) folgen würde. Wir beginnen indem wir
9.4. NULLSTELLENFREIES GEBIET

$s = 2 + it$ in (9.11) einsetzen. Hier ist die linke Seite gleichmäßig beschränkt (überprüfe mit dem Euler-Produkt) und die rechte Seite ist

$$
\sum_\rho \left(\frac{1}{2 + it - \rho} + \frac{1}{\rho} \right) + O(\log |t|)
$$
dank Stirling. Daher ist die Summe, und insbesondere der Realteil, ein $O(\log |t|)$. Aber jeder Summand hat einen positiven Realteil, der größer als $1/(4 + (t - \Im \rho)^2)$ ist. Unsere zweite Behauptung, dass $|t - \Im \rho| < 1$ für höchstens $O(\log |t|)$ Nullstellen ρ, folgt unmittelbar. Außerdem folgt, dass

$$
\sum_{|\Im(s - \rho)| \geq 1} \frac{1}{\Im(s - \rho)^2} \ll \log |t|.
$$

Nun gilt mit (9.11), dass

$$
\frac{\zeta'}{\zeta}(s) - \frac{\zeta'}{\zeta}(2 + it) = \sum_\rho \left(\frac{1}{s - \rho} - \frac{1}{2 + it - \rho} \right) + O(1)
$$

ist. Die linke Seite unterscheidet sich nun von (9.14) um ein $O(1)$. Die rechte Seite, aufsummiert über alle Nullstellen mit $|\Im(s - \rho)| < 1$ ist ein $O(\log |t|)$ von der rechten Seite von (9.14) entfernt. Die übrigen Terme sind

$$
(2 - \sigma) \sum_{|\Im(s - \rho)| \geq 1} \frac{1}{(s - \rho)(2 + it - \rho)} \ll \sum_{|\Im(s - \rho)| \geq 1} \frac{1}{\Im(s - \rho)^2} \ll \log |t|.
$$

Damit ist (9.14) gezeigt und somit (9.13).

9.4 Nullstellenfreies Gebiet

Wir erinnern uns, dass

$$
-\frac{\zeta'}{\zeta}(s) = \sum_{n \geq 1} \frac{\Lambda(n)}{n^s}
$$
einen einfachen Pol in $s = 1$ mit Residuum $+1$ besitzt. Wenn $\zeta(s)$ in einem Punkt $1 + it$ verschwindet, dann hat $-\zeta'/\zeta$ einen einfachen Pol mit Residuum -1 (oder $-2, -3, \ldots$) an dieser Stelle. Die Idee ist nun, wenn wir $\sum_{n \geq 1} \Lambda(n)n^{-s}$ für $\sigma > 1$ konvergiert und s von rechts 1 nähert, dann unterstützen alle Terme den Pol mit positiven Residuum. Wenn $s \to 1 + it$ von rechts, dann werden die entsprechenden Terme mit n^{-it} multipliziert. Damit würde ein Pol mit Residuum -1 verlangen, dass fast alle Phasen n^{-it} nahe bei -1 sind. Aber dann würden in der Nähe von $1 + 2it$ die Phasen n^{-2it} nahe von $(-1)^2 = +1$ sein, und somit einen Pol mit positiven Residuum erzeugen. Dies steht aber im Widerspruch dazu, dass ζ keine anderen Pole außer $s = 1$ besitzt.

Satz 9.12. Es gibt eine Konstante c, sodass $\zeta(s)$ keine Nullstelle in dem Gebiet

$$
\sigma \geq 1 - \frac{c}{\ln(2 + |\tau|)}
$$

besitzt.
Beweis. Die Dirichlet-Reihe
\[-\frac{\zeta'(s)}{\zeta(s)} = \sum_{n \geq 1} \frac{\Lambda(n)}{n^s}\]
hat nur nicht-negative Koeffizienten. Daher können wir Satz 7.6 anwenden und erhalten für \(\sigma > 1\) und alle reellen \(\gamma\), dass
\[-3\frac{\zeta'(\sigma)}{\zeta(\sigma)} - 4\Re \frac{\zeta'(\sigma + i\gamma)}{\zeta(\sigma + i\gamma)} - \Re \frac{\zeta'(\sigma + 2i\gamma)}{\zeta(\sigma + 2i\gamma)} \geq 0\]
ist. Wir erhalten nun das gewünschte Resultat indem wir \(\gamma\) gegen die Ordinate einer Nullstelle \(\rho = \beta + i\gamma\) von \(\zeta(s)\) streben lassen.

Im ersten Schritt erhalten wir, dass
\[-\frac{\zeta'(\sigma)}{\zeta(\sigma)} = \frac{1}{\sigma - 1} + \mathcal{O}(1).\]
Danach verwenden wir die logarithmische Ableitung der Produktformel von \(\zeta\) und erhalten,
\[-\frac{\zeta'(s)}{\zeta(s)} = -B + \frac{1}{s - 1} - \frac{1}{2} \log \pi + \frac{1}{2} \Gamma' \left(\frac{s}{2} + 1\right) - \sum_{\rho} \left(\frac{1}{s - \rho} + \frac{1}{\rho}\right).\]
Wir schätzen \(\Gamma\) mit der komplexen Stirling Formel (Satz 5.11) ab und bemerken, wie oben im Satz von von Mangoldt, dass für \(\sigma > 1\) die Realteile von \(\rho\) und \(\sigma - \rho\) positiv sind. Dann erhalten wir, dass
\[-\Re \frac{\zeta'(\sigma + i\gamma)}{\zeta(\sigma + i\gamma)} \leq \mathcal{O}(\ln |\gamma|) - \frac{1}{\sigma - \beta}.\]
Wenn wir diese Abschätzungen nun oben einsetzen, folgt die Existenz einer positiven Konstante \(c_1\), sodass für \(\gamma \geq 2\) gilt
\[\frac{3}{\sigma - 1} - \frac{4}{\sigma - \beta} \geq -c_1 \ln |\gamma|,\]
woraus folgt, dass
\[1 - \beta \geq \frac{1 - c_1(\sigma - 1) \ln |\gamma|}{(3/(\sigma - 1)) + c_1 \ln |\gamma|}.\]
Indem wir \(\sigma = 1 + (2c_1 \ln |\gamma|)^{-1}\) setzen, erhalten wir, dass
\[1 - \beta \geq \frac{c_2}{\ln |\gamma|}\]
mit \(c_2 = \frac{1}{14c_1}\). Daraus folgt der Satz, denn die Bedingung \(|\tau| \geq 2\) wird unwichtig, wenn wir den Wert von \(c\) nur genügend klein machen.

Weitere Verschärfungen werden durch nichttriviale Abschätzungen für Reihen–Abschnitte \(\sum_{N_1 < n \leq N_2} n^{it}\) erzielt. Das heute beste Ergebnis ist
\[\zeta(\sigma + it) \neq 0\]
für \(t \geq 10, \sigma \geq 1 - (\ln t)^{-2/3}(\ln \ln t)^{-1/3}\)
on Vinogradov und Korobov (1958).
9.5 Schranken für ζ'/ζ, $1/\zeta$ und $\log \zeta$

Satz 9.13 (Borel-Carathéodory). Sei $F(s)$ eine holomorphe Funktion auf $|s| \leq R$, sodass $F(0) = 0$. Wir nehmen an, dass $\max_{|s|=R} |F(s)| \leq A$. Alors gilt

$$|F(s)| \leq 2A |s| R^{n} \cos(n\theta + \theta_n).$$

Beweis. Betrachten wir die Taylor-Reihe von F im Punkt $s = 0$:

$$F(s) = \sum_{n \geq 1} a_n s^n \quad (|s| \leq R).$$

Sei θ_n, für jedes n, das Argument von a_n. Dann können wir schreiben

$$\Re F(Re^{i\theta}) = \sum_{n \geq 1} |a_n| R^n \cos(n\theta + \theta_n).$$

Die Reihe ist absolut und gleichmäßig konvergent für $0 \leq \theta \leq 2\pi$. Nachdem die Funktion F holomorph ist, besitzt die Funktion $\Re F(s)$ die Mittelwertseigenschaft:

$$\int_{0}^{2\pi} \Re F(Re^{i\theta}) \, d\theta = 0.$$

Für $n \geq 1$ eine ganze Zahl folgt, dass

$$\pi |a_n| R^n = \int_{0}^{2\pi} (1 + \cos(n\theta + \theta_n)) \Re F(Re^{i\theta}) \, d\theta \leq 2\pi A.$$

Wir erhalten die Behauptung indem wir mit $(|s|/R)^n$ multiplizieren und über $n \geq 1$ aufsummieren.

Nun sind wir in der Lage die gewünschten Abschätzungen zu beweisen.

Satz 9.14. Es gibt eine positive Konstante C, sodass für $|t| \geq 3$ und $\sigma \geq 1 - c \ln^{-1} |t|$ gilt, dass

$$\frac{\zeta'(s)}{\zeta(s)} \ll \ln |t|, \quad (9.15)$$

$$\frac{1}{\zeta(s)} \ll \ln |t|, \quad (9.16)$$

$$|\log \zeta(s)| \ll \ln \ln |t| + \mathcal{O}(1). \quad (9.17)$$

Beweis. Wir können zunächst annehmen, dass $t > 0$. Nach Satz 9.12 gibt es eine Konstante c mit $0 < c < \frac{1}{16}$, sodass keine nicht triviale Nullstelle $\rho = \beta + i\gamma$ von $\zeta(s)$ mit

$$\beta < 1 - 8c/\ln(|\gamma| + 2)$$

liegt.
existiert. Wir werden zunächst sehen, dass dies

$$\min_{\rho} \Re \left\{ \frac{1}{\rho} + \frac{1}{s - \rho} \right\} \geq 0 \quad (t \geq 4, \sigma \geq 1 - 4c/\ln t)$$ \hfill (9.18)$$

impliziert.

Wenn \(|s - \rho| > \frac{1}{2} |\rho|\), dann erhalten wir, indem wir \(\theta := 2 |s - \rho|/|\rho| \geq 1\) setzen, die untere Schranke

$$\frac{\beta}{|\rho|^2} + \frac{\sigma - \beta}{|s - \rho|^2} = \frac{\theta^2 \beta/4 + \rho - \beta}{|s - \rho|^2} \geq \frac{\sigma - 3/4}{|s - \rho|^2} > 0.$$

Wenn \(|s - \rho| \leq \frac{1}{2}\), dann ist \(|t - \gamma| \leq \frac{1}{2} (|\gamma| + 1)\). Daher ist \(|\gamma| \leq 2t + 2\) und

$$\beta < 1 - 8c/\ln(2t + 4) \leq 1 - 4c/\ln t \leq \sigma.$$

Damit ist die Behauptung \(9.18\) gezeigt.

Von der Partialbruchzerlegung erhalten wir

$$-\Re \frac{\zeta'(s)}{\zeta(s)} \leq K \ln t \quad (t \geq 4, \sigma \geq 1 - 4c/\ln t),$$

wobei \(K\) eine absolute Konstante ist.

Nun können wir die erste Abschätzung \(9.15\) zeigen. Klarerweise können wir annehmen, dass \(t\) genügend groß ist. Sei also \(s = \sigma + it\) eine fixe komplexe Zahl, sodass \(t \geq 5\sigma\) und \(\sigma \geq 1 - c/\ln t\) ist. Wir setzen \(\eta := c/\ln t\) und \(s_0 := 1 + \eta + it\). Dann erfüllt der Punkt \(s_0 + w = \sigma' + it'\) für jedes \(w\) in der Kreisscheibe \(|w| \leq 4\eta\) die Ungleichungen \(t' \geq 4\) und \(\sigma' \geq 1 - 4c/\ln t'\). Daher kann man wie in \(9.18\) schreiben

$$-\Re \frac{\zeta'(s_0 + w)}{\zeta(s_0 + w)} \leq 2K \ln t.$$

Daraus folgt, dass die Funktion

$$F(w) := \frac{\zeta'(s_0)}{\zeta} - \frac{\zeta'(s_0 + w)}{\zeta}$$

auf der Kreisscheibe \(|w| \leq 4\eta\) die Hypothesen vom Satz von Borel-Carathéodory (Satz \(9.13\)) mit \(A := 2K \ln t + |\zeta'(s_0)/\zeta(s_0)|\) erfüllt. Nachdem \(|s - s_0| \leq 2\eta\), folgt mit Satz \(9.13\) dass

$$\left| \frac{\zeta'}{\zeta}(s) \right| \leq 4K \ln t + 3 \left| \frac{\zeta'}{\zeta}(s_0) \right|.$$

Die Abschätzung \(9.15\) folgt daraus, weil

$$\left| \frac{\zeta'}{\zeta}(s_0) \right| \leq \sum_{n \geq 1} \Lambda(n)n^{-1-\eta} = \eta^{-1} + O(1) \ll \ln t.$$

Die Abschätzung \(9.16\) folgt trivialerweise aus \(9.17\). Um diese letzte Abschätzung zu zeigen, benutzen wir \(9.15\) in der Form

$$\log \left(\frac{\zeta(s)}{\zeta(s_0)} \right) = \int_{s_0}^{s} \frac{\zeta'(w)}{\zeta(w)} \, dw \ll |s - s_0| \ln t \ll 1.$$
9.6. DIE RIEMANNSCHE VERMUTUNG

Damit folgt die gewünschte Ungleichung indem wir bemerken, dass

\[
|\log \zeta(s_0)| = \left| \sum_{n \geq 2} \frac{\Lambda(n)}{\ln n} n^{-s_0} \right| \leq \sum_{n \geq 2} \frac{\Lambda(n)}{\ln n} n^{-1-\eta} = \ln \zeta(1+\eta)
\]

\[
= \ln(1/\eta) + O(1) = \ln \ln t + O(1).
\]

\[
\square
\]

9.6 Die Riemannsche Vermutung

\[\zeta(s) \neq 0 \text{ für } \Re s > \frac{1}{2}. \]

Nachdem das Fermatsche Problem 1995 durch Andrew Wiles gelöst wurde, ist dies vielleicht zur Zeit die größte Herausforderung an die Mathematiker.
KAPITEL 9. DIE RIEMANNSCHE ZETA-FUNKTION II
Kapitel 10

Der Primzahlsatz II

Ähnlich wie bei Potenzreihen der k-te Koeffizient durch ein Cauchy-Integral berechnet werden kann, ist es bei Dirichlet-Reihen $\sum a_n n^{-s}$ möglich, endliche Koeffizienten-Summen $\sum_{n \leq x} a_n$ durch Integration zu berechnen. Die technischen Einzelheiten sind hier etwas verwickelter.

10.1 Perronsche Formel

Lemma 10.1. Sei $\alpha, y, T > 0$,

\[
I(y, T) = \frac{1}{2\pi i} \int_{\alpha - iT}^{\alpha + iT} y^s \frac{ds}{s} \quad \text{und} \quad \delta(y) = \begin{cases}
0 & 0 < y < 1; \\
\frac{1}{2} & y = 1; \\
1 & y > 1.
\end{cases}
\]

Dann gilt

\[
|I(y, T) - \delta(y)| < \begin{cases}
y^\alpha \min \left(1, 2T^{-1} |\ln y|^{-1}\right) & \text{für } y \neq 1, \\
\alpha T^{-1} & \text{für } y = 1.
\end{cases}
\]

Beweis.

• $y = 1$. Man sieht unmittelbar, dass

\[
I(1, T) = \frac{1}{2\pi} \int_{-T}^{T} \frac{dt}{\alpha + it} = \frac{1}{\pi} \int_{0}^{T} \frac{\alpha}{\alpha^2 + t^2} \, dt = \frac{1}{2} - \frac{1}{\pi} \int_{T/\alpha}^{\infty} \frac{du}{1 + u^2}.
\]

Triviale Abschätzung des letzten Integrals ($1 + u^2 > u^2$) ergibt die Behauptung.

• $y > 1$. Sei $R = (\alpha^2 + T^2)^{\frac{1}{2}}$. Bezeichne W den geschlossenen Weg, bestehend aus der Strecke S von $\alpha - iT$ nach $\alpha + iT$, und dem Kreisbogen K, mit Mittelpunkt $s = 0$ und Radius R, von $\alpha + iT$ nach links um den Nullpunkt bis $\alpha - iT$. Der Integrand y^s/s hat bei $s = 0$ einen Pol erster Ordnung mit Residuum 1. Der Residuensatz liefert daher

\[
I(y, T) = 1 - \frac{1}{2\pi i} \int_{K} y^s \frac{ds}{s}.
\]

Das K-Integral ist

\[
y^s \frac{\ln y}{s} \bigg|_{\alpha - iT}^{\alpha + iT} + \frac{1}{\ln y} \int_{K} y^s \frac{ds}{s^2}.
\]
Wegen $y > 1$ gilt auf $K|y^s| \leq y^\alpha$ (hier liegt der Grund dafür, dass für $y > 1$ der Kreisbogen links von der Geraden $\sigma = \alpha$ gewählt wird, während man für $0 < y < 1$ den Kreisbogen nach rechts legt). Es ergibt sich mit der Standard–Abschätzung für das Integral

$$|I(y, T) - 1| \leq \frac{1}{2\pi} \left(2\frac{y^\alpha}{R\ln y} + \frac{1}{\ln y} \frac{y^\alpha}{R^2} \pi R \right) < \frac{2}{T} \frac{y^\alpha}{R \ln y}.$$

Dies entspricht der zweiten Alternative in der Behauptung. Die Ungleichung wird für y nahe bei 1 sehr schwach.

Direkte Abschätzung des Integrals über K ergibt die Schranke $\frac{1}{2\pi} \frac{y^\alpha}{R \ln y}$. Dies ist die erste Alternative.

Satz 10.2 (Perronsche Formel). Die Reihe $A(s) = \sum_{n \geq 1} a_n n^{-s}$ sei absolut konvergent für $\sigma > 1$. Es werde vorausgesetzt, dass

1. $\sum_n |a_n| n^{-\sigma} = \mathcal{O} ((\sigma - 1)^{-\beta})$ für $\sigma > 1$ mit einem $\beta \geq 0$,
2. $|a_n| \leq \Phi(n)$ mit einem monoton wachsenden $\Phi : \mathbb{R}^+ \rightarrow \mathbb{R}^+$,
3. $x \geq 2$, $2 \leq T \leq x$ und $1 < \alpha \leq 2$.

Dann gilt

$$\sum_{n \leq x} a_n = \frac{1}{2\pi i} \int_{\alpha - iT}^{\alpha + iT} A(s) \frac{x^s}{s} ds + \mathcal{O} \left(\frac{x^\alpha}{T} (\alpha - 1)^{-\beta} + \frac{x}{T} \Phi(2x) \ln x \right).$$

Bemerkung. 1. Das Prinzip, $\sum_{n \leq x} a_n$ durch das Integral $\frac{1}{2\pi i} \int A(s) \frac{x^s}{s} ds$ zu berechnen, tritt schon bei Riemann und zahlreichen Autoren des neunzehnten Jahrhunderts auf. Eine korrekte Ausführung mit genauer Fehler–Betrachtung gab 1908 Oskar Perron.

2. Die relativ komplizierte Formulierung rührt unter anderem daher, daß das Integral für $T \rightarrow \infty$ i.a. nicht absolut konvergiert. Dieser Mangel fehlt bei der ähnlich, aber einfacher zu beweisenden ”bewichteten Perron–Formel”

$$\sum_{n \leq x} a_n \left(1 - \frac{n}{x} \right) = \frac{1}{2\pi i} \int_{\alpha - i\infty}^{\alpha + i\infty} A(s) \frac{x^s}{s(s + 1)} ds.$$

Hier muß $\sum_{n \leq x} a_n \left(1 - \frac{n}{x} \right)$ auf $\sum a_n$ zurückgeschlossen werden.

Beweis. Wegen der absoluten Konvergenz der Reihe auf der α–Vertikalen können im $\int A(s)x^s s^{-1} ds$ Summation und Integration vertauscht werden. Bei jedem Summanden wird Lemma 10.1 mit...
10.1. Perronsche Formel

\[y = \frac{x}{n} \] angewandt. Man erhält also

\[J = \frac{1}{2\pi i} \int_{\alpha-iT}^{\alpha+iT} A(s) \frac{x^s}{s} \, ds \]

\[= \sum_{n \leq x-1} a_n \left(1 + \mathcal{O}\left(\left(\frac{x}{n} \right)^\alpha T^{-1} \left(\ln \frac{x}{n} \right)^{-1} \right) \right) + \mathcal{O}\left(\sum_{x-1 < n \leq x+1} |a_n| \left(\frac{x}{n} \right)^\alpha \right) \]

\[+ \sum_{n > x+1} a_n \mathcal{O}\left(\left(\frac{x}{n} \right)^\alpha T^{-1} \left(\ln \frac{n}{x} \right)^{-1} \right) . \]

Für \(n \leq \frac{x}{2} \) ist \(\ln \frac{x}{n} \geq \ln 2 \), beziehungsweise \(\ln \frac{n}{x} \geq \ln 2 \) für \(n \geq 2x \). Es ergibt sich

\[J = \sum_{n \leq x} a_n + \mathcal{O}\left(\sum_{x-1 < n \leq x+1} |a_n| \right) + \mathcal{O}\left(x^\alpha T^{-1} \sum_{n \leq x/2} |a_n| n^{-\alpha} \right) \]

\[+ \mathcal{O}\left(T^{-1} \sum_{x/2 < n \leq x-1} |a_n| \left(\frac{x}{n} \right)^\alpha \left(\ln \frac{x}{n} \right)^{-1} \right) + \mathcal{O}\left(T^{-1} \sum_{x+1 < n \leq 2x} |a_n| \left(\frac{x}{n} \right)^\alpha \left(\ln \frac{n}{x} \right)^{-1} \right) \]

\[+ \mathcal{O}\left(x^\alpha T^{-1} \sum_{n > 2x} |a_n| n^{-\alpha} \right) \]

\[= \sum_{n \leq x} a_n + E_1 + \cdots + E_5. \]

Nach Voraussetzung (2) ist

\[E_1 \ll \Phi(2x) \ll \frac{x}{T} \Phi(2x) \ln x. \]

Wir können \(E_2 + E_5 \) mittels Voraussetzung (1) abschätzen zu

\[\ll x^\alpha T^{-1} \sum_{n=1}^{\infty} |a_n| n^{-\alpha} \ll x^\alpha T^{-1} (\alpha - 1)^{-\beta}. \]

Für \(x/2 < n \leq x-1 \) ist

\[\ln \frac{x}{n} = - \ln \frac{n}{x} = - \ln \left(1 - \frac{x-n}{x} \right), \quad \gamma := \frac{x-n}{x} \in (0, 1/2]. \]

Mit

\[- \ln(1-\gamma) = \ln 1 - \ln(1-\gamma) = \int_{1-\gamma}^{1} t^{-1} \, dt \geq \int_{1-\gamma}^{1} \, dt = \gamma \]

ergibt sich wegen \(\alpha \leq 2 \), dass

\[E_3 \ll T^{-1} \sum_{x/2 < n \leq x-1} |a_n| 2^\alpha \frac{x}{x-n} \]

\[\ll T^{-1} x \Phi(2x) \sum_{x/2 < n \leq x-1} \frac{1}{x-n} \ll T^{-1} x \Phi(2x) \sum_{1 \leq k \leq x} \frac{1}{k} \]

\[\ll T^{-1} x \Phi(2x) \ln x. \]
KAPITEL 10. DER PRIMZAHLSATZ II

Analog kann E_4 behandelt werden. Die Fehler-Abschätzungen bewegen sich alle im Rahmen der Behauptung. Damit ist die Perronsche Formel gezeigt.

Gauss äußerte 1849 die Vermutung, dass $\pi(x)$ durch die Funktion

$$\text{Li } x = \int_2^x \frac{dt}{\ln t} \quad (x \geq 2)$$

(Integral–Logarithmus) gut approximiert wird. Er stützte sich dabei auf die Primzahlen bis $3 \cdot 10^6$.

Durch partielle Integration sieht man

$$\text{Li } x = \frac{t}{\ln t} \bigg|_2^x + \int_2^x \frac{dt}{\ln^2 t}$$
$$= \left(\frac{t}{\ln t} + \frac{t}{\ln^2 t} + \frac{2! t}{\ln^3 t} + \cdots + \frac{(N-1)! t}{\ln^N t} \right) \bigg|_2^x + N \int_2^x \frac{dt}{\ln^N t}$$
$$= \frac{x}{\ln x} + \frac{x}{\ln^2 x} + \frac{2! x}{\ln^3 x} + \cdots + \frac{(N-1)! x}{\ln^N x} + O \left(\frac{x}{\ln^{N+1} x} \right)$$

für jedes $N \in \mathbb{N}$ mit von N abhängiger O–Konstanten. Die Gauss'sche Annahme hat sich bestätigt.

10.2 Primzahlsatz mit Restglied

Satz 10.3. Es existieren Konstanten $C_1, C_2 > 0$, sodass für $x \geq 2$ gilt

$$\psi(x) = x + O \left(x \exp \left(-C_1 (\ln x)^{1/2} \right) \right),$$
$$\pi(x) = \text{Li } x + O \left(x \exp \left(-C_2 (\ln x)^{1/2} \right) \right).$$

Bemerkung. Die angegebene Fehler-Abschätzung ist besser als $O \left(x (\ln x)^{-A} \right)$ für jedes $A > 0$, aber schwächer als $O \left(x^{1-\varepsilon} \right)$ für jedes $\varepsilon > 0$. Denn

$$\frac{x \exp \left(-C (\ln x)^{1/2} \right)}{x (\ln x)^{-A}} = \exp \left(C (\ln x)^{1/2} \right) - A \ln x.$$

Dies geht gegen Null für $x \to \infty$. Analog mit $O \left(x^{1-\varepsilon} \right)$.

Insbesondere steht damit der Primzahlsatz in der Gestalt

$$\pi(x) = \frac{x}{\ln x} + \frac{1! x}{\ln^2 x} + \cdots + \frac{(N-1)! x}{\ln^N x} + O \left(\frac{x}{\ln^{N+1} x} \right)$$

für jedes $N \in \mathbb{N}$ zur Verfügung.

Beweis. Es reicht, x als hinreichend groß vorauszu setzen. Für $2 \leq x \leq x_0$ sind die beiden Aussagen mit geeigneten O–Konstanten sicher erfüllt. C_3, C_4, \ldots sind wieder positive, im Prinzip numerisch angebbare Konstanten.
Satz 10.2 wird angewandt auf $a_n = \Lambda(n)$ und $A(s) = -\zeta'(s)/\zeta(s)$. Da $-\zeta'/\zeta$ bei $s = 1$ einen Pol erster Ordnung hat, kann $\beta = 1$ gewählt werden. $\Phi(n) = \ln n$. Wir wählen T mit $2 \leq T \leq x$ am Ende günstig. Außerdem darf α wegen des Wachstums von x^α nicht zu groß, aber wegen des Faktors $(\alpha - 1)^{-1}$ nicht zu nahe bei 1 genommen werden. Eine gute Wahl ist

$$\alpha = 1 + \frac{1}{\ln x}, \quad x^\alpha = e^x = O(x), \quad (\alpha - 1)^{-1} = \ln x.$$

Die Perronsche Formel liefert daher

$$\Psi(x) = \frac{1}{2\pi i} \int_{\alpha-iT}^{\alpha+iT} \left(-\frac{\zeta'}{\zeta}(s)\right) \frac{x^s}{s} ds + O\left(\frac{x}{T}\ln^2 x\right).$$

Es werde vorerst angenommen, dass so wie x auch T numerisch groß ist (die spätere Wahl des T wird dies bestätigen.) Nach Satz 9.12 existiert ein C_3, sodass $\zeta(\sigma + it) \neq 0$ für $0 \leq t \leq T, \quad \sigma \geq \sigma_1 := 1 - C_3 \ln^{-1} t$.

Im Bereich $3 \leq t \leq T$ und $\sigma_1 \leq \sigma \leq 2$ gilt nach Satz 9.14

$$\left|\frac{\zeta'}{\zeta}(\sigma + it)\right| \leq C_4 \ln T. \quad (10.1)$$

Da $\zeta(1 + it) \neq 0$ für $|t| \leq 2$, gibt es ein $C_5 > 0$, sodass $\zeta(\sigma + it) \neq 0$ für $\sigma \geq 1 - C_5, \quad |t| \leq 2$.

Durch eventuelles Verkleinern des C_3 kann man erreichen, dass $\zeta(\sigma + it) \neq 0$ für $\sigma \geq \sigma_2 := 1 - C_6 \ln^{-1} T, \quad |t| \leq T$ und

$$\left|\frac{\zeta'}{\zeta}(s)\right| \leq C_7 \ln T \quad (10.2)$$

für $s = \sigma_2 + it, \quad |t| \leq T$ und $s = \sigma \pm iT, \quad \sigma_2 \leq \sigma \leq \alpha$.

Für $|t| \geq 2$ folgt dies aus (10.1), für $|t| \leq 2$ verhält sich $-\zeta'/\zeta$ nahe $s = 1$ wie $\frac{1}{s - 1}$ + Beschränktes.

Sei W der Weg, bestehend aus

$$H_1, \quad \text{der Strecke von $\alpha - iT$ nach $\sigma_2 - iT$,}$$

$$V, \quad \text{der Strecke von $\sigma_2 - iT$ nach $\sigma_2 - iT$,}$$

$$H_2, \quad \text{der Strecke von $\sigma_2 + iT$ nach $\alpha + iT$,}$$

Das Integral wird nach dem Residuensatz ersetzt durch das über W. Dann ist die einzige überschrittene isolierte Singularität der Pol bei 1. Wegen

$$\text{Res}\left(1, \frac{\zeta'}{\zeta}(s)\frac{x^s}{s}\right) = x$$

folgt daher, dass

$$\Psi(x) = x + \frac{1}{2\pi i} \left(\int_{H_1} + \int_{H_2} + \int_V\right) \left(-\frac{\zeta'}{\zeta}(s)\right) \frac{x^s}{s} ds + O\left(\frac{x}{T} \ln^2 x\right).$$
Auf H_1 und H_2 reicht die Standard-Abschätzung mit (10.2)
\[\int_{H_1} + \int_{H_2} \ll \log T \cdot \frac{x^0}{T} \ll \frac{x}{T} \log x. \]

Analog sieht man
\[\int_V \ll \log T \cdot x^{\sigma_2} \int_V |s|^{-1} |ds|. \]

Auf dem Teil von V mit $|t| \leq 1$ ist $s^{-1} = O(\log T)$, das Integral hierüber also $O(\log T)$. Der restliche Teil lässt sich durch
\[\ll \int_T^{T+1} dt \ll \log T \]
abschätzen.

Zusammen ergibt dies
\[\Psi(x) = x + O\left(\frac{x}{T} \log^2 x \right) + O\left(\frac{x}{T} \log x \right) + O\left(x^{\sigma_2} \log^2 x \right) \]
\[= x + O\left(\log^2 x \left(\frac{x}{T} + x^{\sigma_2} \right) \right). \]

Man wählt nun T, sodass $xT^{-1} = x^{\sigma_2}$ wird, das heißt
\[x \exp(-\log T) = x \exp(-C_6 \log x \cdot \log^{-1} T), \quad \log T = C_6^{1/2} \log^{1/2} x, \quad T = \exp\left(C_6^{1/2} \log^{1/2} x \right). \]

Für hinreichend großes x ist, wie gefordert, $2 \leq T \leq x$ und $T = T(x) \to \infty$ mit $x \to \infty$.

Einsetzen liefert
\[\Psi(x) = x + O\left(x \exp\left(-C_6^{1/2} \log^{1/2} x + 2 \log \log x \right) \right) \]
\[= x + O\left(x \exp\left(-C_1 \log^{1/2} x \right) \right) \]
mit $C_1 = \frac{1}{2} C_6^{1/2}$. Damit ist die erste Aussage des Satzes bewiesen.

Nun wollen wir die äquivalente Abschätzung für die Funktion π gewinnen. Es ist
\[\sum_{p^k \leq x, k \geq 2} \ln p = \sum_{p \leq x^{1/2}} \ln p \sum_{2 \leq k \leq \ln x / \ln p} 1 \leq \ln x \cdot \pi(x^{1/2}) = O\left(x^{1/2} \right) \]

nach Tschebyschow. Also folgt
\[\theta(x) = \sum_{p \leq x} \ln p = \psi(x) - \sum_{p^k \leq x, k \geq 2} \ln p \]
\[= x + O\left(x \exp\left(-C_1 \log^{1/2} x \right) \right) + O\left(x^{1/2} \right) \]
\[= x + O\left(x \exp\left(-C_1 \log^{1/2} x \right) \right). \]

Der Übergang von θ zu π erfolgt mittels partieller Summation
\[\pi(x) = \sum_{p \leq x} \ln p \cdot \frac{1}{\ln p} = \theta(x) \frac{1}{\ln x} + \int_2^x \frac{\theta(t)}{t \ln^2 t} \frac{dt}{t \ln t} \]
\[= \left. \frac{t}{\ln t} \right|_2^x - \int_2^x \frac{d}{dt} \left(\frac{1}{\ln t} \right) \frac{dt}{t \ln t} \]
\[+ O\left(x \exp\left(-C_1 \log^{1/2} x \right) \right) + \int_2^x R(t) \frac{dt}{t \ln t}, \]
wobei sich \(R(t) \) durch \(\mathcal{O}\left(t \exp\left(-C_1 \ln^{1/2} t\right)\right) \) abschätzen lässt.

Das letzte Integral ist
\[
\int_{x/2}^{x} R(t) \frac{dt}{t \ln t} \ll \int_{x/2}^{x^{1/2}} \frac{dt}{t \ln t} + \int_{x^{1/2}}^{x} t \exp\left(-C_1 2^{-1/2} (\ln x)^{1/2}\right) \frac{dt}{t} \\
\ll x^{1/2} + x \exp\left(-C_1 2^{-1/2} (\ln x)^{1/2}\right) \\
\ll x \exp\left(-C_2 (\ln x)^{1/2}\right)
\]
mit \(C_2 = C_1 2^{-1/2} \).

Dies eingesetzt ergibt mittels partieller Integration
\[
\pi(x) = \int_{2}^{x} \frac{dt}{\ln t} + \mathcal{O}\left(x \exp\left(-C_2 (\ln x)^{1/2}\right)\right)
\]
wie behauptet.

Das Vinogradov Korobovsche Nullstellen-freie Gebiet ergibt
\[
\psi(x) = x + \mathcal{O}\left(x \exp\left(-C \ln^{3/5} x \cdot (\ln \ln x)^{-1/5}\right)\right).
\]
Diese Abschätzung wartet seit mehr als fünfzig Jahren auf Verbesserung.

Der fundamentale Zusammenhang zwischen den Primzahlen und den Nullstellen der Zeta–Funktion wird besonders deutlich durch sogenannte explizite Formeln, in denen Primzahlsummen \(\sum_p f(p) \) beziehungsweise \(\sum_n \Lambda(n) f(n) \) mit Nullstellensummen \(\sum_\rho f(\rho) \) in Beziehung gebracht werden. Hier das Standard–Beispiel.

Satz 10.4 (Explizite Formel für \(\psi(x) \)). Für \(2 \leq T \leq x \) gilt
\[
\psi(x) = x - \sum_{\rho,|\Im \rho| \leq T} \frac{x^\rho}{\rho} + \mathcal{O}\left(\frac{x}{T} \ln^2 x\right).
\]
Die \(\rho \)-Summe erstreckt sich über nichttriviale Zeta–Nullstellen. Jedes \(\rho \) wird gemäß seiner Vielfachheit gezählt.

Beweis. Es reicht, die Formel für ein \(T' \) mit \(|T' - T| \leq 1 \) zu zeigen. Am Fehlerterm ändert sich nichts wesentliches. Nach Satz [9.11] ändert sich die \(\rho \)-Summe um \(\mathcal{O}(\ln T) \) Terme. Deren Beitrag ist
\[
\ll \frac{x}{T} \ln T \ll \frac{x}{T} \ln^2 x.
\]
Nach Satz [9.11] existieren ein \(T' \) mit \(T \leq T' \leq T + 1 \) und ein \(C_7 \), sodass für alle \(\rho \)
\[
||3\rho| - T'| \geq C_7 (\ln T)^{-1}
\]
gilt. Es wird wieder die Perronsche Formel auf \(a_n = \Lambda(n) \) mit \(\alpha = 1 + (\ln x)^{-1} \) angewandt:
\[
\psi(x) = \frac{1}{2\pi i} \int_{a-iT'}^{a+iT'} \left(-\frac{\zeta'}{\zeta}(s)\right) \frac{x^s}{s} ds + \mathcal{O}\left(\frac{x}{T} \ln^2 x\right).
\]
KAPITEL 10. DER PRIMZAHLSATZ II

Diesmal sei W der Weg, bestehend aus

H_1, der Horizontalen von $\alpha - iT'$ nach $-1 - iT'$,

V, der Vertikalen von $-1 - iT'$ nach $-1 + iT'$,

H_2, der Horizontalen von $-1 + iT'$ nach $\alpha + iT'$.

Die Wahl des T' bewirkt, dass alle Punkte von W um $\geq C_{12}(\ln T)^{-1}$ von allen ρ (und auch von den trivialen Nullstellen) entfernt sind.

Auf das Integral wird der Residuensatz angewandt. Im Innern des Rechtecks, gebildet aus der α-Vertikalen und W, liegen der Pol bei 1 mit Residuum x und die ρ mit $|\Im \rho| < T'$.

Die Funktion $-\zeta'/\zeta$ hat bei einem ρ mit der Vielfachheit m einen Pol erster Ordnung mit Residuum $-mx/\rho$. Folglich ist

$$\text{Res} \left(\rho, -\frac{\zeta'}{\zeta}(s) \frac{x^s}{s} \right) = -mx/\rho.$$

Oder, wenn ein ρ der Vielfachheit m als m-Tupel einfacher Nullstellen angesehen wird, $\text{Res}(\rho, \ldots) = -x/\rho$. Daher

$$\psi(x) = x - \sum_{\rho, |\Im \rho| \leq T'} \frac{x^\rho}{\rho} + \mathcal{O} \left(\frac{x}{T} \ln^2 x \right) + \frac{1}{2\pi i} \left(\int_{H_1} + \int_{V} + \int_{H_2} \right) \left(-\frac{\zeta'}{\zeta}(s) \frac{x^s}{s} ds \right).$$

Zur Abschätzung von ζ'/ζ auf H_1, V und H_2 benutzt man die Partialbruchzerlegung (Gleichung (9.11)). Nach der Wahl des T' ist für $s \in H_1$ und ρ mit $|\Im s - \Im \rho| \leq 1$ und $|s - \rho|^{-1} \leq C_8 \ln T$. Nach Satz [9.11] müssen nur $\mathcal{O}(\ln T)$ Nullstellen berücksichtigt werden, also

$$\frac{\zeta'}{\zeta}(s) \ll \ln^2 T \ll \ln^2 x.$$

Ebenso für V und H_2. Der Beitrag der Integrale ist damit leicht abzuschätzen:

$$\int_{H_1} + \int_{H_2} \ll \ln^2 x \cdot \frac{x}{T},$$

$$\int_{V} \ll \ln^2 x \cdot x^{-1} \int_{V} \frac{|ds|}{|s|} \ll x^{-1} \ln^3 x \ll \frac{x}{T} \ln^3 x.$$

Einsetzen ergibt die Behauptung.

Die obige explizite Formel hat den Vorteil, dass man zur Herleitung des Primzahlsatzes mit Restglied bei vorgegebenem Nullstellenfreien Gebiet ohne eine obere Abschätzung für $|\zeta'/\zeta|$ auskommt. Für den Fall, dass die Riemannsche Vermutung gilt, ist dies besonders einfach.

10.3 Primzahlsatz unter Annahme der Riemannschen Vermutung

Im Fall der Richtigkeit der Riemannschen Vermutung gilt der Primzahlsatz in der Form

1. $\psi(x) = x + \mathcal{O} \left(x^{1/2} \ln^2 x \right)$,

2. $\pi(x) = \text{Li} x + \mathcal{O} \left(x^{1/2} \ln x \right)$.
10.3. PRIMZAHLSATZ UNTER ANNAHME DER RIEMANNSCHE VERMUTUNG

Beweis. Zur Herleitung von (1) werde $T = x^{1/2}$ genommen (falls $x \geq 4$, ist $2 \leq T \leq x$). Die ρ-Summe in Satz 10.4 kann abgeschätzt werden durch

$$
\sum_{\rho, \Re \rho \leq T} x^{1/2} |\rho|^{-1} \ll x^{1/2} \sum_{1 \leq n \leq \lfloor T \rfloor} n^{-1} \# \{\rho: n < |\Im \rho| \leq n + 1\}
$$

$$
\ll x^{1/2} \sum_{1 \leq n \leq \lfloor T \rfloor} n^{-1} \ln n
$$

$$
\ll x^{1/2} \ln^2 T \ll x^{1/2} \ln^2 x.
$$

Dies ergibt (1). Behauptung (2) folgt wieder aus (1) durch partielle Summation. \qed
KAPITEL 10. DER PRIMZAHLSATZ II
Kapitel 11
Charaktere, L-Reihen und Primzahlen in Progressionen

Bei der Suche nach Primzahlen in einer Restklasse $a \mod k$ mit $(a, k) = 1$ ist es naheliegend, die erzeugende Dirichlet-Reihe $\sum_{n \equiv a(k)} \Lambda(n)n^{-s}$ zu betrachten. Dies führt zu Schwierigkeiten, weil die Funktion

$$f(n) = \begin{cases} \Lambda(n), & \text{falls } n \equiv a(k) \\ 0, & \text{sonst,} \end{cases}$$

sonst keine simplen Faltungs-Eigenschaften aufweist. Dirichlet (1837) löste das Problem, indem er die Indikatorfunktion der Restklasse $a \mod k$ als Linearkombination gewisser vollständig multiplikativer Funktionen darstellte, der Charaktere.

11.1 Definitionen

Satz 11.1. Sei $k \in \mathbb{N}$.

(1) Es gibt genau $\varphi(k)$ Funktionen $\chi : \mathbb{Z} \to \mathbb{C}$ mit

(i) $|\chi(g)| = 1$ für $(g, k) = 1$, $\chi(g) = 0$ für $(g, k) > 1$,
(ii) χ ist vollständig multiplikativ, d.h. $\forall g_1, g_2 : \chi(g_1g_2) = \chi(g_1)\chi(g_2)$.
(iii) χ ist k-periodisch, d.h. $\chi(g + k) = \chi(g)$.

Die χ heißen Dirichlet- oder Restklassen-Charaktere mod k.

(2) Der Charakter χ_0 mit $\chi_0(g) = 1$, falls $(g, k) = 1$, $\chi_0(g) = 0$ für $(g, k) > 1$ heißt der Hauptcharakter mod k.

(3) Für $(g, k) = 1$ und jedes χ mod k ist $\chi(g)$ eine $\phi(k)$-te Einheitswurzel.

(4) Jede Funktion $f : \mathbb{Z} \to \mathbb{C}$ mit den Eigenschaften (ii), (iii) und

$$f(g) = 0 \text{ für } (g, k) > 1, \quad f(g) \neq 0 \text{ für } (g, k) = 1$$

ist ein Charakter mod k.
(5) Die Menge der Charaktere mod k wird durch

$$(\chi_1 \cdot \chi_2)(g) := \chi_1(g) \cdot \chi_2(g)$$

zu einer abelschen Gruppe, der Charaktergruppe mod k. Dabei ist χ_0 das neutrale Element, zu jedem χ ist $\bar{\chi}$ das Inverse. Die Charaktergruppe ist isomorph zur Gruppe (\mathbb{Z}_k^*, \cdot).

Beweis. Die Konstruktion der Charaktere wird durchsichtig, wenn man mit beliebigen endlichen abelschen Gruppen arbeitet. Nach dem Hauptsatz ist jede abelsche Gruppe G der Ordnung n (äußeres direktes) Produkt von zyklischen Gruppen G_1, \ldots, G_r mit erzeugenden Elementen g_j und neutralen Elementen e_j, $\#G_j = n_j$, $n = n_1 \cdots n_r$. Jedes $g \in G$ ist bijektiv ein r–Tupel

$$(g_1^{a_1}, \ldots, g_r^{a_r}) \quad (0 \leq a_j \leq n_j - 1)$$

zugeordnet. Multiplikation in G entspricht Addition der Exponenten a_j mit Reduktion mod n_j in der j–ten Komponente. Kurz: $G \cong G_1 \times \cdots \times G_r$

Sei ξ ein Homomorphismus von G in (\mathbb{C}^*, \cdot). Dann induziert ξ Homomorphismen ξ_j von G_j in (\mathbb{C}^*, \cdot) und

$$\xi(g) = (\xi_1(g_1))^{a_1} \cdots (\xi_r(g_r))^{a_r}.$$

Wegen $g_j^{n_j} = e_j$ ist $(\xi_j(g_j))^{n_j} = 1$, d.h. die $\xi_j(g_j)$ sind n_j–te Einheitswurzeln. Jedes r–Tupel von Einheitswurzeln (η_1, \ldots, η_r) induziert einen Homomorphismus, und umgekehrt. Es gibt also genau $n_1 \cdots n_r = n$ Homomorphismen ξ. Diese werden auch Gruppen–Charaktere genannt. ξ_0 zu dem r–Tupel $(1, \ldots, 1)$ heißt der Hauptcharakter.

Die allgemeinen Überlegungen werden auf $G = (\mathbb{Z}_k^*, \cdot)$ angewandt.

Für $k = p^f$, $2 < p$ ist G nach dem Satz über Primitivwurzeln zyklisch. Sei b eine PW mod p^f. Zu jedem $h \in \mathbb{Z}$ mit $(h, k) = 1$ existiert genau ein $a \in \{0, \ldots, \varphi(p^f) - 1\}$ mit $h \equiv b^a \mod p^f$.

Allgemeiner: Sei

$$k = p_1^{f_1} \cdots p_r^{f_r}, \quad 2 < p_1 < \cdots < p_r$$

mit Primitivwurzeln $b_j \mod p_j^{f_j}$. Zu $h \in \mathbb{Z}$ mit $(h, k) = 1$ existieren eindeutige $a_j \in \{0, \ldots, \varphi(p_j^{f_j}) - 1\}$ und

$$h \equiv b_j^{a_j} \mod p_j^{f_j} \quad (j = 1, \ldots, r).$$

Im Sinn des direkten Produkts also

$$h \mapsto (b_1^{a_1}, \ldots, b_r^{a_r}) \quad (\bar{h} = h + k\mathbb{Z}).$$

Das Exponententupel (a_1, \ldots, a_r) heißt auch das Index–System zu h (bezüglich der PW b_1, \ldots, b_r).

Die Homomorphismen $\xi : \mathbb{Z}_k^* \to \mathbb{C}^*$ werden also durch r–Tupel von Einheitswurzeln (η_1, \ldots, η_r) mit η_j eine $\varphi(p_j^{f_j})$–te EW gegeben. $\xi(h) = \eta_1^{a_1} \cdots \eta_r^{a_r}$.

Falls eine Zweierpotenz das k teilt, kann ähnlich vorgegangen werden.

Jeder Gruppencharakter ξ auf \mathbb{Z}_k^* induziert einen Dirichlet–Charakter, und umgekehrt:

$$\chi(h) := \begin{cases} \xi(h), & \text{für } (h, k) = 1, \\ 0, & \text{sonst}. \end{cases}$$

Multiplikativität und Periodizität folgen aus der Homomorphie. Wegen der k–Periodizität liefert jedes χ ein ξ. Damit sind (1), (2) und (3) gesichert.
Sei f eine Funktion wie in (4). Dann wird durch
\[\xi(\overline{h}) = f(h) \quad ((h, k) = 1) \]
ein Homomorphismus und damit ein Charakter definiert.

Zur Struktur der Charaktergruppe im allgemeinen Fall. Sind ξ und $\tilde{\xi}$ Charaktere von
\[G \cong G_1 \times \cdots \times G_r \to \mathbb{C}^\times, \]
dann ist auch $\xi \cdot \tilde{\xi}$ ein solcher. Der Hauptcharakter ξ_0 spielt die Rolle des neutralen Elements. Mit ξ ist auch $\overline{\xi}$ ein Charakter, wegen $\xi(g) \cdot \overline{\xi}(g) = 1$ ist $\overline{\xi}$ invers zu ξ.

Seien η_1, \ldots, η_r primitive n_j-te Einheitswurzeln. Jedes Einheitswurzel–r–Tupel $(\omega_1, \ldots, \omega_r)$ läßt sich als
\[(\eta_1^{a_1}, \ldots, \eta_r^{a_r}) \quad (0 \leq a_j \leq n_j - 1) \]
schreiben. Dann wird durch
\[g \leadsto (g_1^{a_1}, \ldots, g_r^{a_r}) \longleftrightarrow \xi \leadsto (\eta_1^{a_1}, \ldots, \eta_r^{a_r}) \]
ein Isomorphismus zwischen G und der Charaktergruppe definiert.

\begin{itemize}
 \item \textbf{Beispiele.} 1. $k = 5$. Hier ist $b = 2$ Primitivwurzel, $1 \equiv 2^0$, $2 \equiv 2^1$, $3 \equiv 2^3$, $4 \equiv 2^2 \mod 5$. $\eta = i$ ist primitive vierte Einheitswurzel: $\eta^0 = 1$, $\eta^1 = i$, $\eta^2 = -1$, $\eta^3 = -i$. Die vier Charaktere mod 5 entstehen dadurch, dass man $b = 2$ die vier möglichen η-Potenzen zuordnet. Die Charaktertafel (nur für $(g, 5) = 1$ angegeben) lautet damit

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ_0</td>
<td>2 \leadsto 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ξ_1</td>
<td>2 \leadsto i</td>
<td>1</td>
<td>i</td>
<td>$-i$</td>
</tr>
<tr>
<td>ξ_2</td>
<td>2 \leadsto -1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>ξ_3</td>
<td>2 \leadsto $-i$</td>
<td>1</td>
<td>$-i$</td>
<td>i</td>
</tr>
</tbody>
</table>

2. $k = 12 = 2^2 \cdot 3$. Hier ist $\mathbb{Z}_{12}^\times \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. $b_1 = 3$ ist PW mod 4, $b_2 = 2$ mod 3. Die Indexsysteme sind

\[h = 1 \leadsto (0, 0) \quad h = 5 \leadsto (0, 1) \]
\[h = 7 \leadsto (1, 0) \quad h = 11 \leadsto (1, 1) \]

$\eta_1 = -1$ und $\eta_2 = -1$ sind zwei primitive EW. Die Charaktertafel lautet hier

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>5</th>
<th>7</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ_0</td>
<td>(3, 2) \leadsto (1, 1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ξ_1</td>
<td>(3, 2) \leadsto (1, -1)</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>ξ_2</td>
<td>(3, 2) \leadsto (-1, 1)</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>ξ_3</td>
<td>(3, 2) \leadsto (-1, -1)</td>
<td>1</td>
<td>-1</td>
<td>$-i$</td>
</tr>
</tbody>
</table>

Zum Glück wird es im Folgenden i.a. nicht nötig sein, die Werte der Charaktere im einzelnen zu kennen. Wichtig ist, was die obigen Beispiele vermuten lassen, dass in der Charaktertafel Zeilen– und Spaltensummen (außer der ersten) Null ergeben.
114KAPITEL 11. CHARAKTERE, L-REIHEN UND PRIMZAHLEN IN PROGRESSIONEN

11.2 Orthogonalitätsrelationen

Satz 11.2. (1) Sei \(\chi \) ein Charakter mod k.

\[
\sum_{h \mod k} \chi(h) = \begin{cases}
\varphi(k), & \text{falls } \chi = \chi_0, \\
0, & \text{sonst,}
\end{cases}
\]

wobei h ein volles (oder reduziertes) Restsystem mod k durchläuft.

(2) \((h,k) = 1\).

\[
\sum_{\chi \mod k} \chi(h) = \begin{cases}
\varphi(k), & \text{falls } h \equiv 1 \mod k, \\
0, & \text{sonst,}
\end{cases}
\]

wobei \(\chi \) über die \(\varphi(k) \) Charaktere mod k läuft.

Beweis. (1) Im Fall \(\chi = \chi_0 \) ist die Aussage klar. Sei \(\chi \neq \chi_0 \). Dann existiert ein \(g \) mit \((g,k) = 1\) und \(\chi(g) \neq 1 \). Mit \(h \) durchläuft \(gh \) ein reduziertes Restsystem mod k. Mit der \(k \)-Periodizität und der Multiplikativität von \(\chi \) folgt

\[
\sum_{h \mod k} \chi(h) = \sum_{h \mod k} \chi(hg) = \chi(g) \sum_{h \mod k} \chi(h).
\]

Wegen \(\chi(g) \neq 1 \) muss die Summe verschwinden.

(2) Sei \(h \not\equiv 1 \mod k \). Dann existiert ein \(\chi_1 \) mit \(\chi_1(h) \neq 1 \). Sei wie oben \(\mathbb{Z}_k^* \cong \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_r} \),

\[
\begin{align*}
\bar{h} &\mapsto (g_1^{a_1}, \ldots, g_r^{a_r}), \\
\chi &\mapsto (\eta_1^{b_1}, \ldots, \eta_r^{b_r}),
\end{align*}
\]

\(0 \leq a_j \leq n_j - 1 \), \(\eta_j^{n_j} = 1 \), \(n_j \) primitiv.

Dann ist wegen \(\bar{h} \neq \bar{1} \) mindestens ein \(a_j > 0 \), oBdA \(a_1 > 0 \). Es werde \(\chi_1 \) durch das \(r \)-Tupel \((\eta_1,1,\ldots,1)\) gegeben.

\[
\chi_1(h) = \eta_1^{a_1} \cdot 1^{a_2} \cdots 1^{a_r} = \eta_1^{a_1} \neq 1.
\]

Der Rest verläuft so wie in (1). Nach der Gruppeneigenschaft der Charaktermenge durchläuft mit \(\chi \) auch \(\chi_1\chi \) alle Charaktere mod k

\[
\sum_{\chi \mod k} \chi(h) = \sum_{\chi \mod k} (\chi\chi_1)(h) = \chi_1(h) \sum_{\chi \mod k} \chi(h).
\]

Dies bedingt, dass die Summe verschwindet.

\(\square \)

Proposition 11.3. Sei \(f : \mathbb{N} \to \mathbb{C}, \sum_n |f(n)| < \infty \), \((a,k) = 1\). Dann gilt

\[
\sum_{n \geq 1} f(n) = \frac{1}{\varphi(k)} \sum_{\chi \mod k} \chi(a) \sum_{n \geq 1} f(n)\chi(n).
\]
11.2. ORTHOGONALITÄTSPRÄGRELATIONEN

Beweis. Sei \(a^* \equiv 1 \mod k \). Dann gilt für jedes \(\chi \mod k \) dass \(1 = \chi(1) = \chi(a^*) = \chi(a)\chi(a^*) \); also \(\chi(a^*) = \overline{\chi}(a) \). Für \((k,a) = 1 \) wird daraus

\[
\frac{1}{\varphi(k)} \sum_{\chi \mod k} \overline{\chi}(a)\chi(n) = \frac{1}{\varphi(k)} \sum_{\chi} \chi(a^*n)
\]

\[
= \begin{cases}
1, & \text{falls } a^*n \equiv 1 \mod k, \\
0, & \text{sonst},
\end{cases}
\]

\[
= \begin{cases}
1, & \text{falls } n \equiv a \mod k, \\
0, & \text{sonst}.
\end{cases}
\]

Da in \(\sum_n f(n)\chi(n) \) die \(n \) mit \((n,k) > 1 \) das Gewicht 0 erhalten, folgt die Behauptung.

Proposition 11.4. Für \(\chi \neq \chi_0 \mod k \), \(0 < A < B \) gilt

\[
\left| \sum_{A<n\leq B} \chi(n) \right| \leq \varphi(k).
\]

Beweis. Das Intervall \((A,B] \) wird in Teile der Länge \(k \) und ein Reststück zerlegt. Die Summen über eine volle Periode verschwinden nach Satz 11.2 (1), das Reststück bringt \(\leq \varphi(k) \) Summanden vom Betrag Eins.

Eine mit der Riemannschen Zeta-Funktion vergleichbare Rolle spielen die Dirichlet-Reihen zu den Charakteren.

Satz 11.5. (1) Für jeden Charakter \(\chi \mod k \) mit \(\chi \neq \chi_0 \) konvergiert die Reihe

\[
L(s,\chi) := \sum_{n \geq 1} \chi(n)n^{-s}
\]

kompakt für \(\sigma > 0 \) (und stellt dort eine holomorphe Funktion dar). Für \(\sigma > 1 \) gilt die Produktformel

\[
L(s,\chi) = \prod_{p \mid k} \left(1 - \frac{\chi(p)}{p^s} \right)^{-1}
\]

(Dirichletsche L-Reihen).

(2) Die Reihe

\[
L(s,\chi_0) = \sum_{n \geq 1} \chi_0(n)n^{-s} \quad (\chi = \chi_0 \mod k)
\]

konvergiert kompakt und absolut für \(\sigma > 1 \). In \(\mathbb{C} \) gilt

\[
L(s,\chi_0) = \zeta(s) \cdot \prod_{p \mid k} \left(1 - \frac{1}{p^s} \right).
\]

Beweis. (1) Sei \(K \) ein kompakter Teil von \(\{ s, \sigma > 0 \} \). Insbesondere ist für alle \(s \in K \)

\[
\Re s \geq \delta = \delta(K) > 0, \quad |s| \leq C = C(K).
\]
Für $0 < A < B$ sieht man mit partieller Summation

$$S = S(\chi, A, B, s) := \sum_{A < n \leq B} \chi(n)n^{-s}$$

$$= \sum_{A < n \leq B} \chi(n)B^{-s} - \int_{A}^{B} \sum_{A < n \leq t} \chi(n)t^{-s-1}dt,$$

also wegen Proposition 11.4

$$|S| \leq \varphi(k)B^{-\delta} + \varphi(k)\frac{C}{\delta} A^{-\delta} \leq \varphi(k)(C\delta^{-1} + 1)A^{-\delta},$$

woraus sich die gleichmäßige Konvergenz und damit die Holomorphie von $L(s, \chi)$ ergibt.

(2) Für $\sigma > 1$ konvergieren alle $L(s, \chi)$ absolut. Daher erhalten wir

$$L(s, \chi) = \prod_{p} \left(1 + \frac{\chi(p)}{p^s} + \frac{\chi(p^2)}{p^{2s}} + \cdots \right)$$

$$= \prod_{p|k} \left(1 + \frac{\chi(p)}{p^s} + \frac{\chi(p^2)}{p^{2s}} + \cdots \right) = \prod_{p|k} \left(1 - \frac{\chi(p)}{p^s} \right)^{-1}.$$

Im Fall $\chi = \chi_0$ folgt unmittelbar

$$L(s, \chi_0) = \prod_{p|k} \left(1 - \frac{1}{p^s} \right)^{-1} = \zeta(s) \cdot \prod_{p|k} \left(1 - \frac{1}{p^s} \right).$$

\[\square \]

Bemerkung. Während $L(s, \chi_0)$ keine neuen Probleme bietet, müssen die vielen $L(s, \chi)$ ($\chi \not\equiv \chi_0 \mod k$) ähnlich wie die Zeta–Funktion neu untersucht werden. Wie im nächsten Abschnitt gezeigt wird, sind einige Ideen übertragbar, andere müssen neu entwickelt werden. Es sei noch erwähnt, dass die $L(s, \chi)$ ($\chi \neq \chi_0$) auf ganz \mathbb{C} holomorph fortgesetzt werden können und Funktiongleichungen genügen, in denen $L(s, \chi)$ und $L(1 - s, \chi)$ miteinander verknüpft werden.

11.3 Primzahlen in Progressionen

Dirichlet konnte 1837 als erster zeigen, dass jede Restklasse $a \mod k$ mit $(a, k) = 1$ unendlich viele Primzahlen enthält. Mit Aussagen über die Nullstellenfreiheit der L–Funktionen, ähnlich wie zur Zeta–Funktion in Kapitel 9, sowie dem Newmanschen Tauber–Satz ist es möglich, relativ rasch den Primzahlsatz in Progressionen

$$\pi(x, k, a) := \# \{ p \leq x : p \equiv a \mod k \} = \frac{1}{\varphi(k)} \frac{x}{\ln x} \cdot (1 + o(1))$$

zu beweisen. Die Primzahlen verteilen sich danach asymptotisch gleichmäßig auf die $\varphi(k)$ reduzierten Restklassen mod k.
11.3. PRIMZAHLEN IN PROGRESSIONEN

Proposition 11.6. Für $\sigma > 1$ und $(a,k) = 1$ gilt

$$\sum_{n \geq 1} \Lambda(n)n^{-s} = \frac{1}{\varphi(k)} \sum_{\chi \mod k} \overline{\chi(a)} \left(-\frac{L'}{L}(s, \chi) \right).$$

Beweis. Wegen der vollständigen Multiplikativität der Charaktere hat man für jedes $\chi \mod k$

$$((\mu \cdot \chi) \ast (1 \cdot \chi))(n) = \sum_{d|n} \mu(d)\chi(d)\left(\frac{n}{d} \right) = \chi(n)\sum_{d|n} \mu(d) = \chi(n)\delta(n) = \delta(n),$$

also nach dem Multiplikationssatz

$$\sum_{n \geq 1} \mu(n)\chi(n)n^{-s} \cdot \sum_{m \geq 1} \chi(m)m^{-s} = 1,$$

$$\sum_{n \geq 1} \mu(n)\chi(n)n^{-s} = (L(s, \chi))^{-1} \text{ für } \sigma > 1.$$

Insbesondere ist $L(s, \chi) \neq 0$ für $\sigma > 1$.

Ähnlich sieht man $(\Lambda \cdot \chi) \ast (1 \cdot \chi) = \chi \ln$, also

$$\sum_{n \geq 1} \Lambda(n)\chi(n)n^{-s} \cdot \sum_{m \geq 1} \chi(m)m^{-s} = 1,$$

$$\sum_{n \geq 1} \Lambda(n)\chi(n)n^{-s} = -\frac{L'}{L}(s, \chi).$$

Aus Proposition [11.3] ergibt sich für $\sigma > 1$

$$\sum_{n \geq 1} \Lambda(n)n^{-s} = \frac{1}{\varphi(k)} \sum_{\chi \mod k} \overline{\chi(a)} \sum_{n \geq 1} \Lambda(n)\chi(n)n^{-s},$$

was zur Behauptung führt. \hfill \square

Im Hinblick auf die Anwendung des Tauber–Satzes sind die Singularitäten der L'/L auf der 1–Geraden zu untersuchen. Nach Satz [11.5] (2) gilt

$$\frac{L'}{L}(s, \chi_0) = \frac{\zeta'}{\zeta}(s) + \frac{P'_k}{P_k}(s) \text{ wobei } P_k(s) = \prod_{p|k} \left(1 - \frac{1}{p^s} \right).$$

Da P_k für $\sigma > 0$ holomorph und ohne Nullstellen ist, hat $L'/L(s, \chi_0)$ bei s einen Pol erster Ordnung mit Residuum 1, und ist holomorph auf dem Rest der Vertikalen.

Satz 11.7. (1) Für $\chi \mod k$, $\chi \neq \chi_0$ ist $L(s, \chi)$ holomorph und $\neq 0$ für $s = 1 + it$, $t \in \mathbb{R}$.

(2) Die Funktion $L(s, \chi_0)$ hat bei $s = 1$ einen Pol erster Ordnung mit Residuum 1 und ist holomorph und $\neq 0$ für $s = 1 + it$, $t \in \mathbb{R} \setminus \{0\}$.

Beweis. (1) Es wird sich herausstellen, dass die de la Vallé-Poussin-Methode aus Satz 7.6 auf die L-Reihen übertragbar ist, bis auf den Fall
\[\chi \neq \chi_0, \quad \chi^2 = \chi_0 \text{ (d.h. reelwertig), } t = 0. \]
Für \(\sigma > 1 \) sieht man
\[
\Re \left(3 \frac{L'}{L}(\sigma, \chi_0) + 4 \frac{L'}{L}(\sigma + it, \chi) + \frac{L'}{L}(\sigma + 2it, \chi^2) \right) = - \sum_{(n,k)=1} n^{-\sigma} \Lambda(n) \Re \left(3 + 4\chi(n)n^{-it} + \chi^2(n)n^{-2it} \right) = - \sum_{(n,k)=1} n^{-\sigma} \Lambda(n) (3 + 4\cos \varphi_n + \cos 2\varphi_n) \quad (\varphi_n = \arg \chi(n) - t \ln n) \leq 0. \tag{11.1}
\]
Im Fall \(t \neq 0 \) verläuft die Argumentation wie früher. Habe \(L(s, \chi) \) bei \(1 + it \) eine \(m \)-fache Nullstelle, \(L(s, \chi^2) \) bei \(2 + it \) eine \(\mu \)-fache (\(\mu \in \mathbb{N}_0 \)). Dann verhält sich für \(\sigma \to 1^+ \)
\[
3 \frac{L'}{L}(\sigma, \chi_0) + 4 \frac{L'}{L}(\sigma + it, \chi) + \frac{L'}{L}(\sigma + 2it, \chi^2) \tag{11.2}
\]
wie \(- \frac{3}{\sigma - 1} + \frac{4m}{\sigma - 1} + \frac{\mu}{\sigma - 1} + \text{Beschränktes} \). Dies führt zum Widerspruch zu (11.1).
Im Fall \(t = 0, \chi \neq \chi_0, \chi^2 \neq \chi_0 \) ist \(L(s, \chi^2) \) bei \(s = 1 \) holomorph und kann höchstens eine \(\mu \)-fache Nullstelle haben. Hier kann wie oben argumentiert werden.
Im Fall \(t = 0, \chi \neq \chi_0, \chi^2 = \chi_0 \) ist \(L(s, \chi^2) \) bei \(s = 1 \) einen Pol. Wir können (11.2) durch
\[
- \frac{3}{\sigma - 1} + \frac{4m}{\sigma - 1} + \frac{\mu}{\sigma - 1} + \text{Beschränktes}
\]
beschrieben. Jetzt kann man hieraus nur noch schließen, dass \(L(s, \chi) \) bei \(s = 1 \) keinen mehrfache Nullstelle hat.

(2) Zu der Aussage
\[L(1, \chi) \neq 0 \quad \text{für} \quad \chi \neq \chi_0, \chi^2 = \chi_0 \]
gibt es zahlreiche Beweise. Am durchsichtigsten ist wohl der mit Hilfe des Landauschen Satzes 6.8
Es werde \(L(1, \chi) = 0 \) angenommen. Dann ist
\[F(s) := \zeta(s)L(s, \chi) \]
holomorph für \(\sigma > 0 \).
Für \(\sigma > 0 \) gilt
\[F(s) = \sum_n f(n)n^{-s} \quad \text{mit} \quad f = 1 * \chi. \]
11.3. PRIMZAHLEN IN PROGRESSIONEN

f ist multiplikativ und ≥ 0, denn

$$f(p^\ell) = \sum_{0 \leq \nu \leq \ell} (\chi(p))^{\nu} = \begin{cases}
1, & p \mid k \\
\ell + 1, & p \nmid k, \chi(p) = 1, \\
1, & p \nmid k, \chi(p) = -1, \ell \equiv 0 \mod 2, \\
0, & p \nmid k, \chi(p) = -1, \ell \equiv 1 \mod 2.
\end{cases}$$

Insbesondere ist

$$f(m^2) \geq 1.$$

Die Reihe für F ist bei $s = 1/2$ divergent, d.h. die Konvergenzabszisse σ_0 zu F ist $\geq 1/2$. Nach dem Satz von Landau (Satz 6.8), der auf F anwendbar ist, hat F eine Singularität bei σ_0, was aber der Holomorphie widerspricht.

\textbf{Satz 11.8} (Primzahlsatz in Progressionen). Für $(k,a) = 1$ gilt

\begin{align*}
(1) \quad \psi(x,k,a) &= \sum_{\substack{n \leq x, n \equiv a \mod k}} \Lambda(n) = \frac{x}{\varphi(k)} \cdot (1 + o(1)) \\
(2) \quad \pi(x,k,a) &= \# \{ p \leq x : p \equiv a \mod k \} = \frac{1}{\varphi(k) \ln x} \cdot (1 + o(1)).
\end{align*}

Die von $o(1)$ induzierten Funktionen können von k und a abhängen.

Da der Beweis mit Hilfe des Newmanschen Tauber-Satzes wie beim gewöhnlichen Primzahl-

satz verläuft, reichen ein paar Hinweise. Es kam dort darauf an, dass

$$\sum_n \Lambda(n)n^{-s} - \frac{1}{s-1} = \frac{\zeta'}{\zeta}(s) - \frac{1}{s-1}$$

holomorph auf die Gerade $\{s, \sigma = 1\}$ fortsetzbar ist.

Nach Proposition 11.6 und Satz 11.7 trifft dies auch auf

$$\sum_{n \equiv a \mod k} \Lambda(n)n^{-s} - \frac{1}{\varphi(k)(s-1)}$$

zu. Denn allein der Hauptcharakter χ_0 liefert in Proposition 11.6 einen Pol-Beitrag.

\textbf{Bemerkung.} Wie oben kann für jede L-Funktion ein Nullstellenfreies Gebiet hergeleitet werden. Dementsprechend beweist man

$$\pi(x,k,a) = \frac{\text{Li}x}{\varphi(k)} + O \left(x \exp \left(-C \sqrt{\ln x} \right) \right),$$

wobei die O-Konstante und C von k abhängen kann.

Die für viele Anwendungen wichtige Frage nach Gleichmäßigkeit der Fehler-Abschätzung in Bezug auf k und a wird im nächsten Kapitel verfolgt.
11.4 Verallgemeinerte oder Große Riemannsche Vermutung (GRV)

Sei $L(s, \chi)$ die L–Reihe zu einem Dirichlet–Charakter $\chi \mod k$. Dann haben alle Nullstellen ρ von $L(s, \chi)$ im Streifen $0 \leq \sigma \leq 1$ den Realteil $\frac{1}{2}$. Bislang ist kein Gegenbeispiel bekannt. Ein Beweis der Vermutung für $\zeta(s)$ muß nicht unbedingt einen Beweis der allgemeinen Form nach sich ziehen. Zum Beispiel ist es kein Problem, $\zeta(\sigma) \neq 0$ für $0 < \sigma < 1$ zu zeigen, während nach dem bisherigen Wissen reelle Nullstellen nahe bei $s = 1$ für L–Reihen mit reellen Charakteren nicht ausgeschlossen werden können (s. Kapitel 12, Satz von Siegel). Ähnlich wie die gewöhnliche RV den Primzahlsatz in der Form

$$\pi(x) = \text{Li} x + O\left(x^{\frac{1}{2}} \ln x\right)$$

liefert, bedingt die GRV den Primzahlsatz in Progressionen

$$\pi(x, k, a) = \frac{\text{Li} x}{\varphi(k)} + O\left(x^{\frac{1}{2}} \ln x\right) \quad (k \leq x, (k, a) = 1).$$

Es gibt zahlreiche andere Konsequenzen der RV. Hier soll eine diskutiert werden, die sich auf die aktuelle Frage nach schnellen Primzahltests bezieht. Für eine ungerade Primzahl p bezeichne $n_2(p)$ das kleinste $a \in \{1, \ldots, p - 1\}$ mit $\left(\frac{a}{p}\right) = -1$ (kleinster quadratischer Nicht–Rest mod p). Man sieht sofort, dass $n_2(p)$ selbst Primzahl ist. Aus $\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) = 0$ ergibt sich $n_2(p) \leq \frac{p-1}{2}$ ist. Die Pólya–Vinogradovsche Ungleichung

$$\sum_{1 \leq a \leq x} \left(\frac{a}{p}\right) \ll p^{\frac{1}{2}} \ln p \quad (1 \leq x \leq p)$$

läßt auf

$$n_2(p) \ll p^{2-1}e^{-1/2+\varepsilon} \quad \text{für jedes } \varepsilon > 0$$

schließen. Der beste heutige Wert ist

$$n_2(p) \ll p^{4-1}e^{-1/2+\varepsilon}$$

von D. Burgess (1957). Die GRV für den Charakter $\left(\frac{\cdot}{p}\right)$ verschärft dies zu

$$n_2(p) \ll \ln^2 p.$$
Kapitel 12
Der Satz von Siegel-Walfisz

Bei der Herleitung des Primzahlsatzes in Progressionen

\[\pi(x, k, a) = \frac{\text{Li} x}{\varphi(k)} \left(1 + o(1)\right) \quad (x \to \infty) \]

wurde bislang nicht auf die Abhängigkeit des Fehler–Terms von \(k \) geachtet. In Anwendungen, so zum Beispiel beim Goldbachschen Problem, kommt es vielfach auf Gleichmäßigkeit der Fehler–Abschätzung in einem weiten \(k \)–Bereich an.

Wie steht es damit, wenn die verallgemeinerte Riemannsche Vermutung vorausgesetzt wird? In diesem Fall lässt sich

\[\pi(x, k, a) = \frac{\text{Li} x}{\varphi(k)} + O\left(x^{\frac{1}{2}} \ln x\right) \]

mit universeller \(O \)–Konstante zeigen. Wegen \(\text{Li} x = x/\ln x \cdot (1 + o(1)) \) ist

\[x^{\frac{1}{2}} \ln x \ll \frac{\text{Li} x}{\varphi(k)} \ln^2 \frac{x}{x^{\frac{1}{2}}} \ll \frac{\text{Li} x}{\varphi(k)} \frac{1}{\ln x} \quad \text{für} \quad k \leq x^{\frac{1}{2}} \ln^{-3} x. \]

Dies bewirkt

\[\pi(x, k, a) = \frac{\text{Li} x}{\varphi(k)} \left(1 + O\left(\frac{1}{\ln x}\right)\right) \]

„gleichmäßig“ für \(k \leq x^{\frac{1}{2}} \ln^{-3} x, (a, k) = 1. \)

Ziel des Kapitels ist eine solche Gleichmäßigkeitssaussage ohne Annahme unbewiesener Hypothesen. Der \(k \)–Bereich wird wesentlich kleiner ausfallen.

Zur Einführung des nächsten Begriffes einige Beispiele:

1. Der Hauptcharakter \(\chi_0 \mod k \) \((k > 1)\) entsteht durch Einschränkung des Hauptcharakters \(\mod 1 \) auf die Menge \(\{g, (g, k) = 1\} \). Umgekehrt liefert \(\chi_0 \mod 1 \) durch Einschränken (und Einführen von Null–Werten) alle Charaktere \(\chi_0 \mod k. \)

2. Der durch das Legendre–Symbol \(\mod p \) \((p > 2)\) definierte Charakter \(\chi \neq \chi_0 \mod p \) kann für jedes \(k \) mit \(p \mid k \) durch

\[\chi(g) = \begin{cases} \left(\frac{g}{p}\right), & \text{falls } (g, k) = 1; \\ 0, & \text{sonst} \end{cases} \]

zu einem Charakter \(\mod k \) verändert werden.
KAPITEL 12. DER SATZ VON SIEGEL-WALFISZ

Satz 12.1. (1) Sei $\chi \neq \chi_0$ ein Charakter mod k. Dann gibt es eindeutig ein k_1 mit

\[k_1 \mid k \quad \text{und} \quad k_1 \text{ ist die kürzeste Periode von } \chi, \text{ eingeschränkt auf } \{g, (g,k) = 1\} \]

(2) Falls in (1) $k_1 = k$ gilt, heißt χ primitiver Charakter.

(3) Zu jedem Charakter $\chi \neq \chi_0$ mod k gibt es eindeutig ein $k_1 \mid k$ und einen primitiven Charakter χ_1 mod k_1, sodass

\[\chi(g) = \chi_1(g) \quad \text{für } (g,k) = 1. \]

Man sagt: χ wird erzeugt vom primitiven Charakter χ_1 mod k_1. k_1 heißt der Erklärungsmodul zum Charakter χ mod k.

Bemerkung. (1) Der Charakter χ_0 mod 1 wird nicht zu den primitiven Charakteren gezählt, obwohl er im Sinn von (3) alle χ_0 mod k erzeugt.

(2) Werde χ mod k von χ_1 mod k_1 ($k_1 \mid k$) erzeugt. Dann gilt für $\sigma > 0$

\[L(s, \chi) = L(s, \chi_1) \prod_{p | k, p \not{|} k_1} \left(1 - \frac{\chi_1(p)}{p^s}\right). \]

Beweis von Satz 12.1. Sei $k_1 \leq k$ die kleinste natürliche Zahl, für die χ auf $\{g, (g,k) = 1\}$ k_1-periodisch ist, d.h.

\[\chi(g + ak_1) = \begin{cases} 0, & \text{falls } (g + ak_1, k) > 1; \\ \chi(g), & \text{falls } (g + ak_1, k) = 1. \end{cases} \]

Es wird $k_1 \mid k$ gezeigt. Mit passenden $a, b \in \mathbb{Z}$ lässt sich $(k, k_1) = ak + bk_1$ schreiben. Im Fall $(g + (k, k_1), k) = 1$ folgt mit der k- und k_1-Periodizität

\[\chi(g + (k, k_1)) = \chi(g + ak + bk_1) = \chi(g + bk_1) = \chi(g). \]

(k, k_1) ist somit auch Periode, d.h. $k_1 \leq (k, k_1)$, also $k_1 = (k, k_1), k_1 \mid k$. Damit ist (1) gezeigt. Sei wie in (1) k_1 (mit $k_1 \mid k$) die kleinste Periode von χ auf $\{g, (g,k) = 1\}$. Es muss ein primitiver Charakter χ_1 mod k_1 gefunden werden, der χ erzeugt. Dazu muss

\[\chi_1(g) = \begin{cases} \chi(g) & \text{für } (g,k) = 1 \\ 0 & \text{für } (g,k) > 1 \end{cases} \]

sein.

Es fehlen noch die Werte von χ_1 für die g mit $(g,k) > 1$ und $(g,k_1) = 1$. Diese Menge ist nichtleer, wenn k einen Primteiler enthält, der in k_1 nicht vorkommt. Falls es $t \in \mathbb{Z}$ gibt mit $(g + tk_1, k) = 1$, kann $\chi_1(g) = \chi(g + tk_1)$ gesetzt werden. Auf die Wahl des t kommt es nicht an, da χ auf $\{h, (h,k) = 1\}$ k_1-periodisch ist.

Wir können

\[t = \prod_{p | k, p \not{|} k_1, g} p \]

nehmen. Es reicht $q \mid g + tk_1$ für alle q mit $q \mid k$ einzusehen.
1. Fall: $q \mid k_1$. Aus $q \mid g + tk_1$ folgt $q \mid g$, was wegen $(g, k_1) = 1$ nicht sein kann.

2. Fall: $q \nmid k_1$, $q \mid k$, $q \nmid g$. Aus $q \mid g + tk_1$ folgt $q \mid t k_1$, $q \mid t$. Dies ist nach der Definition von t ausgeschlossen.

3. Fall: $q \mid k_1$, $q \mid k$, $q \nmid g$. Dann ist $q \mid t$ und aus $q \mid g + tk_1$ folgte $q \mid tk_1$, $q \mid t$. Dies ist nach der Definition von t ausgeschlossen.

Nachdem χ_1 k_1–periodisch definiert ist, ist auch die vollständige Multiplikativität gegeben. Somit ist χ ein Charakter mod k_1. Da k_1 minimale Periode war, ist – außer im Fall $k_1 = 1$ und $\chi_1 = 1 – \chi_1$ primitiver Charakter mod k_1. Aus $\chi_1 = 1$ folgt $\chi = \chi_1$ mod k, was ausgeschlossen war.

So wie beim Beweis der Nullstellenfreiheit der $L(s, \chi)$ auf der 1–Vertikalen der Fall

$$\chi \neq \chi_0, \quad \chi^2 \neq \chi_0, \quad t = 0$$

gesondert betrachtet werden mußte, ist auch beim Herleiten Nullstellenfreier Gebiete links von $\sigma = 1$ dieser Fall problematisch. Bis heute können reelle Nullstellen (Siegel–Nullstellen), die mit wachsendem Modul rasch an die Eins heranrücken, nicht ausgeschlossen werden. Das folgende Ergebnis stellt seit über 70 Jahren die beste Aussage zu diesem Problem dar.

Satz 12.2 (Siegel (1935)). Sei $\chi \neq \chi_0$ ein reellwertiger Charakter mod k, $\varepsilon > 0$.

1. Es existiert ein $\tilde{C}_1(\varepsilon)$, sodass

$$L(1, \chi) > \tilde{C}_1 k^{-\varepsilon}.$$

2. Es existieren $\tilde{C}_2(\varepsilon)$ und $\tilde{C}_3(\varepsilon)$, sodass

$$\left| \frac{L'}{L}(s, \chi) \right| \leq \tilde{C}_2 k^\varepsilon \ln^2 k \quad \text{für} \quad 1 - \frac{\tilde{C}_3}{k^\varepsilon \ln^2 k} \leq \sigma \leq 2, \quad |t| \leq 1.$$

Insbesondere ist dort $L(s, \chi) \neq 0$.

Bemerkung. 1. Aus dem folgenden Beweis kann keine effektive Abhängigkeit der \tilde{C} von ε entnommen werden (z.B. $\tilde{C}_1 \leq 100 \varepsilon^{-5}$). Genauso ist es mit allen anderen bis heute bekannten Zugängen. Will man mit numerisch angebaren Konstanten rechnen, muss man sich mit der schwächeren Ungleichung

$$L(1, \chi) \geq C k^{-\frac{1}{2}}$$

(und entsprechend $\sigma \geq 1 - C k^{-\frac{1}{2}} \ln^{-2} k$) zufrieden geben.

2. Es reicht in (1), primitive χ zu betrachten. Es werde χ vom primitiven χ^* mod k^* ($1 < k^*, k^* \mid k$) erzeugt und dementsprechend gelte

$$L(s, \chi) = L(s, \chi^*) \prod_{p \mid k^*, p \mid k^*} \left(1 - \frac{\chi^*(p)}{p^s} \right).$$
Es sei (1) schon für χ^* gezeigt und werde mit $\varepsilon/2$ benutzt. Mit der Formel $\sum_{p \leq x} = \ln \ln x + O(1)$ sieht man

\[
\prod_{p \mid k, \not p \mid k^*} \left(1 - \frac{\chi^*}{p} \right) \geq \prod_{p \mid k} \left(1 - \frac{1}{p} \right) = \exp \left(- \sum_{p \leq k} \left(\frac{1}{p} + \frac{1}{2p^2} + \cdots \right) \right) \geq \exp (- \ln k - D_1) = \frac{D_2}{\ln k}
\]

mit positivem, numerisch angebbarem D_2. Es folgt

\[
L(1, \chi) \geq L(1, \chi^*) \frac{D_2}{\ln k} \geq C_1 \left(\frac{\varepsilon}{2} \right) k^{-\frac{\varepsilon}{2}} \frac{D_2}{\ln k} \geq C_1^* (\varepsilon) k^{-\varepsilon},
\]

wobei C_1^* eventuell etwas kleiner ist als C_1.

Bei der Herleitung von (2) wird die Primitivität nicht benutzt werden.

Beweis. Beweis zu (1) für primitive χ nach Theodor Estermann (1902–1991). Die Argumentation ist eine höchst raffinierte Verschärfung des Beweises zu $L(1, \chi) \not= 0$ aus Kapitel 11.

Seien $\chi_1 \mod k_1$ und $\chi_2 \mod k_2$ verschiedene, primitive (also $\not= \chi_0 \mod k_j$), reellwertige Charaktere. Dann ist $\chi_1 \chi_2 \not= \chi_0 \mod k_1 k_2$. Denn $\chi_1 \chi_2 = \chi_0$ bewirkt $\chi_1 = \chi_2 \mod k_1 k_2$. Dann folgt wie im Beweis zu Satz 12.1 (1), dass $k_1 k_2$, k_1, k_2 und (k_1, k_2) Periode auf $\{g, (g, k_1 k_2) = 1\}$ sind. Die Primitivität bewirkt $k_1 = k_2$, $\chi_1 = \chi_2$, was ausgeschlossen war. Somit ist

\[
F(s) = F(s, \chi_1, \chi_2) := \zeta(s)L(s, \chi_1)L(s, \chi_2)L(s, \chi_1 \chi_2)
\]

holomorph in $\{s, \sigma > 0, s \not= 1\}$ und hat bei $s = 1$ einen Pol erster Ordnung mit Residuum

\[
\lambda = L(1, \chi_1)L(1, \chi_2)L(1, \chi_1 \chi_2) \in \mathbb{R}.
\] (12.1)

Es gilt

\[
F(\sigma) \geq \frac{1}{2} - C_1 \lambda k_1 k_2^{8(1-\sigma)} \quad \text{für} \quad \frac{7}{8} \leq \sigma < 1.
\] (12.2)

Beweis von (12.2). Der Multiplikationssatz liefert für $\Re s > 1$

\[
F(s) = \sum_n f(n) n^{-s}
\]

mit multiplikativem $f = 1 \ast \chi_1 \chi_2 \ast \chi_1 \chi_2$, wobei

\[
f(p^\ell) = \sum_{0 \leq \nu_1, \ldots, \nu_4 \leq \ell \atop \nu_1 + \cdots + \nu_4 = \ell} \chi_1(p^{\nu_2+\nu_4}) \chi_2(p^{\nu_3+\nu_4}).
\]
f hat die wichtige Eigenschaft

$$\forall n: f(n) \geq 0.$$ \hfill (12.3)

Dazu reicht es, $f(p^\ell)$ zu betrachten. Im Fall $\chi(p_1) = \chi(p_2) = -1$ hat man

$$f(p^\ell) = \sum_{0 \leq \nu_1, \ldots, \nu_4 \leq \ell} (-1)^{\nu_2 + \nu_3} = \sum_{0 \leq g \leq \ell} (-1)^{g}(g + 1)(\ell - g + 1) := S(\ell).$$

Für ungerade ℓ ist

$$2S(\ell) = \sum_{0 \leq g \leq \ell} (g + 1)(\ell - g + 1)\left((-1)^{g} + (-1)^{\ell-g}\right) = 0,$$

für $0 < \ell = 2\ell' + 2$ folgt

$$S(\ell) = S(\ell - 1) + \sum_{0 \leq g \leq \ell - 1} (-1)^{g}(g + 1) + (-1)^{\ell}(\ell + 1) \geq 0.$$

In den übrigen Fällen geht man ähnlich bzw. wesentlich einfacher vor. F kann um $s_0 = 2$ in eine Potenzreihe vom Konvergenzradius 1 (wegen des Pols bei $s = 1$) entwickelt werden.

$$F(s) = \sum_{\nu=0}^{\infty} \alpha_\nu (2-s)^{\nu}, \quad |2-s| < 1$$ \hfill (12.4)

mit

$$\forall \nu: \alpha_\nu \geq 0, \quad \alpha_0 = F(2) \geq f(1) = 1.$$ \hfill (12.5)

Denn

$$\alpha_\nu = (-1)^{\nu} \frac{F^{(\nu)}(2)}{\nu!} = (-1)^{\nu} \frac{\nu!}{\nu} \sum_{n \geq 1} (-1)^{\nu} f(n) \ln^{\nu} n \frac{n}{n^2} \geq 0$$

wegen (12.3). Die Ungleichung für α_0 sieht man ebenfalls mit (12.3). $F(s) - \frac{\lambda}{s-1}$ ist holomorph im Kreis $\{s: |s - 2| < 2\}$, daher ergibt (12.4) (zunächst für $|s - 2| < 1$, dann mit dem Identitätssatz)

$$F(s) - \frac{\lambda}{s-1} = \sum_{\nu=0}^{\infty} (\alpha_\nu - \lambda)(2-s)^{\nu} \quad (|s - 2| < 2).$$ \hfill (12.6)

Mit der Ungleichung

$$\left| \sum_{A < n \leq B} \chi(n) \right| \leq \varphi(k) \quad (\chi = \chi \mod k)$$

sieht man durch partielle Summation, wie schon mehrfach,

$$|L(s,\chi_j)| \leq C_2 k_j \quad (j = 1, 2), \quad |L(s,\chi_1\chi_2)| \leq C_2 k_1 k_2$$
für \(|s - 2| \leq \frac{3}{2}\), also

\[|\lambda| \leq C_5 k_1^2 k_2^2.\]

Mit \(|\zeta(s)| \leq C_4\) für \(|s - 2| = \frac{3}{2}\) ergibt dies

\[\left| F(s) - \frac{\lambda}{s-1} \right| \leq C_5 k_1^2 k_2^2 \quad \text{für } |s - 2| = \frac{3}{2}. \quad (12.7)\]

Für die Koeffizienten \(\alpha_\nu - \lambda\) der Potenzreihe \((12.6)\) liefert die Cauchysche Formel daher die Ungleichungen

\[|\alpha_\nu - \lambda| \leq C_6 k_1^2 k_2^2 \left(\frac{2}{3}\right)^\nu. \quad (12.8)\]

Sei nun \(\frac{7}{8} \leq \sigma < 1\). Mit noch zu wählendem \(N = N(k_1, k_2)\) folgt aus \((12.8)\)

\[
\sum_{\nu \geq N} |\alpha_\nu - \lambda| (2 - \sigma)\nu \leq C_6 k_1^2 k_2^2 \sum_{\nu \geq N} \left(\frac{2}{3}\right)^\nu \left(\frac{9}{8}\right)^\nu
\leq C_7 k_1^2 k_2^2 \left(\frac{3}{4}\right)^N \leq C_7 k_1^2 k_2^2 e^{-N/4}.
\]

Wegen \((12.5)\) ergibt dies mit \((12.6)\)

\[
F(\sigma) - \frac{\lambda}{\sigma - 1} \geq \sum_{0 \leq \nu \leq N-1} (\alpha_\nu - \lambda)(2 - \sigma)\nu - C_7 k_1^2 k_2^2 e^{-N/4}
\geq 1 - \lambda \frac{(2 - \sigma)^N - 1}{1 - \sigma} - C_7 k_1^2 k_2^2 e^{-N/4}. \quad (12.9)
\]

Es werde – OBdA – \(C_7 > 1\) angenommen. Dann kann \(N\) so bestimmt werden, dass

\[
\frac{1}{2} e^{-1/4} < C_7 k_1^2 k_2^2 e^{-N/4} < \frac{1}{2} \quad (12.10)
\]

erfüllt ist. Insbesondere gilt \(N \leq 8 \ln(k_1 k_2) + C_8\) und

\[(2 - \sigma)^N = \exp(N \ln(1 + (1 - \sigma))) < \exp(N(1 - \sigma)) \leq C_9(k_1 k_2)^{8(1-\sigma)}. \quad (12.11)\]

\((12.9)\) und \((12.11)\) führen zu

\[
F(\sigma) > 1 - C_9 \frac{\lambda}{1 - \sigma} (k_1 k_2)^{8(1-\sigma)} - \frac{1}{2} = \frac{1}{2} - C_9 \frac{\lambda}{1 - \sigma} (k_1 k_2)^{8(1-\sigma)},
\]

wie in \((12.2)\) behauptet. \(\square\)

Es soll nun aus \((12.2)\) die Ungleichung in (1) hergeleitet werden. Dazu sei \(\varepsilon > 0\) vorgegeben.

1. Fall: Es existiert ein \(k_1\) und ein primitives \(\chi_1\) mod \(k_1\) mit \(\chi_1 \neq \chi_0\), \(\chi_1^2 = \chi_0\) und

\[
L(\sigma_1, \chi_1) = 0 \quad \text{für ein } \sigma_1 = \sigma_1(\varepsilon) \in (1 - \varepsilon/16, 1). \quad (12.12)
\]

Dann werde \(F\) mit diesem \(\chi_1\) definiert. Es gilt

\[
F(\sigma_1) = F(\sigma_1, \chi_1, \chi_2) = 0 \quad \text{für jedes zulässige } \chi_2 \quad (12.13)
\]
2. Fall: Es existiere kein \(\chi_1 \) der obigen Art. Man halte ein \(k_1 \), ein \(\chi_1 \mod k_1 \) mit \(\chi_1 \neq \chi_0 \), \(\chi_1^2 = \chi_0 \) fest. Wegen

\[
L(\sigma, \chi_1), L(\sigma, \chi_2), L(\sigma, \chi_1 \chi_2) \to 1 \text{ für } \sigma \to \infty,
\]

der Reellwertigkeit und dem Nicht-Verschwinden bei \(\sigma > 1 - \varepsilon/16 \) ist

\[
L(\sigma, \chi_1)L(\sigma, \chi_2)L(\sigma, \chi_1 \chi_2) > 0 \text{ für } \sigma \in (1 - \varepsilon/16, 1).
\]

Da \(\zeta(\sigma) \) beim Durchqueren des Pols das Vorzeichen wechselt, lässt sich ein \(\sigma_1 = \sigma_1(\varepsilon) \in (1 - \varepsilon/16, 1) \) finden mit

\[
F(\sigma_1) < 0 \text{ für alle zulässigen } \chi_2.
\]

Aus (12.2) ergibt sich in allen Fällen – bei festem \(\sigma_1(\varepsilon) \), \(\chi_1 \mod k_1 \) und beliebigem \(\chi_2 \mod k_2 \) mit \(k_2 > k_1 \) -

\[
\frac{C_1 \lambda}{1 - \sigma_1}(k_1k_2)^{8(1-\sigma_1)} > \frac{1}{2} - F(\sigma_1) \geq \frac{1}{2},
\]

beziehungsweise

\[
\lambda > C_{10}(1 - \sigma_1)(k_1k_2)^{-8(1-\sigma_1)}.
\]

Aus (12.2) und (12.1) ergibt sich

\[
L(1, \chi_1) L(1, \chi_1 \chi_2) \leq C_{11} \ln k_1 \cdot \ln(k_1k_2) \leq \tilde{C}_4(\varepsilon) \ln k_2
\]

sicht man mit (12.15) und (12.1)

\[
L(1, \chi_2) \geq \tilde{C}_5(\varepsilon) k_2^{-8(1-\sigma_1)} (\ln k_2)^{-1}
\]

\[
\geq \tilde{C}_5 k_2^{-\varepsilon/2} (\ln k_2)^{-1} \geq \tilde{C}_6 k_2^{-\varepsilon}.
\]

Dies ist richtig für alle zulässigen \(\chi_2 \) mit \(k_2 > k_1(\varepsilon) \). Durch eventuelle Verkleinerung des \(\tilde{C}_6 \) kann die Ungleichung für alle \(k_2 \) erreicht werden. Damit ist (1), der entscheidende Teil des Siegelschen Satzes, für primitive \(\chi (\equiv \chi_2) \) gezeigt.

Die Herleitung von (2) aus (1) nahe bei \(\sigma = 0 \) ist relativ einfach. Es existieren \(\tilde{C}_7(\varepsilon) \) und \(\tilde{C}_8(\varepsilon) \), sodass

\[
\left| \frac{L'}{L}(s, \chi) \right| \leq \tilde{C}_7 k^\varepsilon \ln^2 k \text{ für } |t|, \quad |\sigma - 1| \leq \tilde{C}_8 k^{-\varepsilon} \ln^{-2} k.
\]

Man hat

\[
|L'(s, \chi)| \leq C_{12} \ln^2 k,
\]

also mit genügend kleinem \(\tilde{C}_8 \),

\[
|L(s, \chi)| \geq L(1, \chi) - \left| \int_1^s L'(z, \chi) \, dz \right|
\]

\[
\geq L(1, \chi) - |s - 1| C_{12} \ln^2 k
\]

\[
\geq \tilde{C}_1 k^{-\varepsilon} - \tilde{C}_8 C_{12} k^{-\varepsilon} \geq \frac{1}{2} \tilde{C}_1 k^{-\varepsilon}.
\]

Für $\sigma > 1$, $|t| \leq 1$ ist
\[
1 \leq L^3(\sigma, \chi_0) |L^4(\sigma + it, \chi)| |L(\sigma + 2it, \chi_0)| \leq |L^4(\sigma + it, \chi)| L^4(\sigma, \chi_0),
\]
also
\[
|L(\sigma + it, \chi)| \geq C_{13}(\sigma - 1) \prod_{p|k} \left(1 - \frac{1}{p^\sigma}\right)^{-1} \geq C_{13}(\sigma - 1).
\]

Für $2 \geq \sigma \geq 1 + \tilde{C}_8 k^{-\varepsilon} \ln^{-2} k$ ist (2) hieraus direkt ablesbar, für $|\sigma - 1| \geq \tilde{C}_8 k^{-\varepsilon} \ln^{-2} k$, $\tilde{C}_8 k^{-\varepsilon} \ln^{-2} k \leq |t| \leq 1$ kann wieder mit Hilfe von $L'(s, \chi)$ argumentiert werden.

Satz 12.3. Es existieren universelle, positive Konstanten C_{14}, \ldots, C_{17} mit folgenden Eigenschaften

1. Für $2 \geq \sigma \geq 1 - C_{14}$ ($\geq \frac{1}{2}$) und $|t| \leq 1$ gilt
 \[
 \left| \frac{L'}{L}(s, \chi_0) + \frac{1}{s-1} \right| \leq C_{15} \ln k \quad (\chi_0 = \chi_0 \mod k).
 \]

2. Für $\chi \mod k$, $\chi \neq \chi_0$, $\chi^2 \neq \chi_0$ und $\sigma \geq 1 - C_{16} (\ln(k(|t| + 2)))^{-1}$
 gilt
 \[
 \left| \frac{L'}{L}(\sigma + it, \chi) \right| \leq C_{17} (\ln(k(|t| + 2))).
 \]

3. Für $\chi \mod k$, $(\chi \neq \chi_0, \chi^2 = \chi_0)$ oder $\chi = \chi_0$ gilt die Ungleichung (2) im Bereich
 \[
 2 \geq \sigma \geq 1 - C_{16} (\ln(k(|t| + 2)))^{-1}, |t| \geq 1.
 \]

Der einzige Bereich, in dem aufgepasst werden muss, ist also der für $\chi \neq \chi_0$, $\chi^2 = \chi_0$ in Satz 12.2 angegebene. Hier wird das Nullstellenfreie Rechteck nahe bei $s = 1$ mit wachsendem k möglicherweise sehr rasch schmäler als das für die anderen χ ($\tilde{C}_3(\varepsilon) k^{-\varepsilon} \ln^{-2} k$ ist für große k wesentlich kleiner als $C_{16} \ln^{-1} k$).

Es stehen nun die analytischen Hilfsmittel zur Verfügung, mit denen ohne neue Schwierigkeiten das Hauptergebnis gezeigt werden kann.

Satz 12.4 (Satz von Siegel–Walfisz (Arnold W., 1892–1962)). Zu jedem $A > 0$ existieren von A abhängige Konstanten D_1 und D_2, sodass für $x \geq 2$, $k \leq (\ln x)^A$ und $(k, a) = 1$ gilt

\[
\psi(x, k, a) - \frac{x}{\varphi(k)} \leq D_2 x \exp \left(-D_1 \sqrt{\ln x}\right)
\]
\[
\pi(x, k, a) - \frac{\text{Li} x}{\varphi(k)} \leq D_2 x \exp \left(-D_1 \sqrt{\ln x}\right)
\]
Bemerkung. Während unter Annahme der verallgemeinerten RV der Fehler in \(\psi(x, k, a) \)
gleichmäßig in \(k \) und \(a \) mit \(k \) bis kurz vor \(x^{1/2} \) abgeschätzt werden kann, wird hier nur
gleichtmäßigkeit bis \(k \leq (\ln x)^A \) erreicht. Man kann \(A \) zwar beliebig groß wählen, aber die
\(\mathcal{O} \)-Konstante \(D_2 \) hängt in bislang nicht effektiv angebbarer Weise von \(A \) ab.
Man kann zeigen, dass es zu jedem Modul \(k \) höchstens einen reellen Charakter \(\tilde{\chi} \) und dazu
höchstens eine reelle Nullstelle \(\beta \) mit \(1 - \frac{c}{\ln k} < \beta < 1 \) (\(c > 0 \), angebbar) existiert. Diese
"Siegel'sche Ausnahme–Nullstelle" hat außerdem die Eigenschaft, dass im Fall ihrer Existenz
keine weiteren Nullstellen zu Charakteren \(\chi \) mod \(k \) "nahe bei \(\sigma = 1 \)" liegen. Aus der expliziten
Formel für \(\psi(x, k, a) \) kann man schließen
\[
\psi(x, k, a) = \frac{x}{\varphi(k)} - \frac{\tilde{\chi}(a)}{\varphi(k)} x^\beta + \text{Rest}.
\]
Im Fall \(\tilde{\chi}(a) = 1 \) kann der \(x^\beta \)-Term den Hauptterm nahezu auslöschen, während bei \(\tilde{\chi}(a) = -1 \) der Hauptterm nahezu verdoppelt wird. Dazu darf \(x \) im Vergleich zu \(k \) nicht zu groß sein.

Zum Beweis von Satz 12.4. Hierzu wird an die Herleitung von Satz 10.3 erinnert. Wie dort
soll mit \(T = \exp(D_3 \sqrt{\ln x}) \) gearbeitet werden. Damit für alle Charaktere zu einem Modul
\(k \leq (\ln x)^A \) im Bereich
\[
1 - C_{17}(\ln T)^{-1} \leq \sigma \leq 2, \quad |t| \leq T
\]
keine Nullstelle von \(L(s, \chi) \) auftritt, muss
\[
1 - C_{16} \ln^{-1} (k(T + 2)) \leq 1 - C_{17}(\ln T)^{-1} \text{ gemäß Satz 12.3 (2)}
\]
und
\[
1 - \tilde{C}_3 k^{-\varepsilon} \ln^{-2} k \leq 1 - C_{17}(\ln T)^{-1} \text{ gemäß Satz 12.2 (2)}
\]
angesichert werden.
Zu (12.20): Mit einem \(\tilde{C}_3 \) gilt \(\tilde{C}_3 k^{-\varepsilon} \ln^{-2} k \geq \tilde{C}_3 k^{-2\varepsilon} \). Damit ist (12.20) gewährleistet, wenn
\(\tilde{C}_3 k^{-2\varepsilon} \geq C_{17} \ln^{-1} T \) stimmt, was
\[
k \leq (\ln T)^{1/2\varepsilon} \left(\tilde{C}_3 \tilde{C}_{17}^{-1} \right)^{1/2\varepsilon} = D_3^{1/2\varepsilon} \left(\tilde{C}_3 \tilde{C}_{17}^{-1} \right)^{1/2\varepsilon} (\ln x)^{1/4\varepsilon}
\]
entspricht. Wenn \(A \) vorgegeben ist, wählt man somit \(\varepsilon = 1/(4A) \), sowie \(D_3 = D_3(A) \) gemäß
\[
D_3^{1/2\varepsilon} \left(\tilde{C}_3 \tilde{C}_{17}^{-1} \right)^{1/2\varepsilon} = 1. \text{ Bedingung (12.19) ist für } k \leq (\ln x)^A \text{ und das obige } T \text{ bei richtiger}
\]
Wahl des \(C_{17} \) offenbar erfüllt. Damit ist (12.18) gesichert. Dort gilt
\[
\left| \frac{L'}{L}(s, \chi) \right| \leq C_{18}(\ln T) \leq D_4(\ln x)^{1/2}
\]
(mit der naheliegenden Modifikation für \(\chi = \chi_0 \)). Wieder muss bedacht werden, dass \(D_4 \) in
nicht effektiv angebbarer Weise von \(A \) abhängt. Der Rest des Beweises verläuft so wie der zu
Satz 10.3 mit der Perronschen Formel, angewandt auf
\[
\frac{1}{\varphi(k)} \sum_{\chi \mod k} \tilde{\chi}(a) \frac{L'}{L}(s, \chi).
\]

Man überzeugt sich, dass auch bei bescheidenerem Fehlerterm für \(\psi(x, k, a) \) zum Beispiel
\(\mathcal{O} \left(\frac{x}{\varphi(k) \ln x} \right) \), der Gleichmäßigkeitsbereich \(k \leq (\ln x)^A \) nicht erweitert werden kann.
Teil III

Siebmethoden
Kapitel 13

Einleitung

13.1 Das Sieb von Eratosthenes

Das Inklusions-Exklusions-Prinzip oder die Inversionsformel von Möbius erlauben es uns theoretisch $\pi(x)$ auszurechnen. Für x genügend groß und

$$P = \prod_{p \leq \sqrt{x}} p,$$

ist eine notwendige und hinreichende Bedingung, dass eine ganze Zahl n, mit $\sqrt{x} < n \leq x$, eine Primzahl ist, dass $(n, P) = 1$. Daher können wir schreiben, dass

$$\pi(x) - \pi(\sqrt{x}) + 1 = \sum_{n \leq x} \delta((n, P)) = \sum_{d | P} \mu(d) \left\lfloor \frac{x}{d} \right\rfloor.$$ \hspace{1cm} (13.1)

Wenn wir nun versuchen, $[x/d]$ mittels $x/d + O(1)$ abzuschätzen, erhalten wir

$$\pi(x) - \pi(\sqrt{x}) + 1 = x \prod_{p \leq \sqrt{x}} \left(1 - \frac{1}{p}\right) + O \left(2^{\pi(\sqrt{x})}\right).$$

Mit der Formel von Mertens ist der Hauptterm dieser Abschätzung gleich $\{2e^{-\gamma} + o(1)\} x/\ln x$, aber der Fehlerterm wird durch die Abschätzungen von Teschebyschev größer als jede Potenz von x.

Um ein nicht-triviales Resultat aus der Formel (13.1) zu erhalten, müssen wir einen weiteren Parameter y, mit $1 \leq y \leq x$, einführen und dann $\pi(x) - \pi(y) + 1$ durch die Anzahl der ganzen Zahlen n kleiner als x, die keinen Primteiler $\leq y$ besitzen, abzuschätzen. Wir erhalten mit derselben Rechnung

$$\pi(x) \leq x \prod_{p \leq y} \left(1 - \frac{1}{p}\right) + O \left(2^y\right) = x e^{-\gamma} + o(1) \frac{\ln y}{\ln \ln x} + O \left(2^y\right) \leq \left\{e^{-\gamma} + o(1)\right\} x \frac{\ln y}{\ln \ln x}.$$
Für eine optimale Wahl von $y = \ln x$.
Dieses zweite Resultat ist auch der Ausgangspunkt für die Optimierungen dieser Methode, die vom norwegischen Mathematiker Viggo Brun in den Jahren 1917 bis 1924 entwickelt wurden.

13.2 Das kombinatorische Sieb von Brun

Das Sieb des Eratosthenes basiert auf der Gleichung

$$\mu \ast 1 = \delta.$$

Die Idee von Brun besteht darin, zwei Hilfsfunktionen μ_1 und μ_2 einzuführen, sodass

$$\mu_1 \ast 1 \leq \delta \leq \mu_2 \ast 1 \quad (13.2)$$

und genügend Auslöschung der Terme in einer zu (13.1) analogen Formel zu bekommen.

Die erste Wahl von Brun, die in der Literatur oft „das reine Sieb von Brun“ genannt wird, ist die folgende.

Satz 13.1 (Brun). Bezeichnen wir mit χ_t die Indikatorfunktion der Menge aller ganzen Zahlen n, sodass $\omega(n) \leq t$. Dann erfüllen, für jede positive ganze Zahl h, die Funktionen

$$\mu_i(n) := \mu(n)\chi_{2h+i}(n) \quad (i = 1, 2) \quad (13.3)$$

die Ungleichungen (13.2).

Beweis. Nachdem $\mu_i \ast 1(n)$ nur vom quadratfreien Teil von n abhängt, genügt der Fall $\mu(n)^2 = 1$. Wenn $\omega(n) = k$, dann besitzt n für jedes r, $0 \leq r \leq k$, genau $\binom{k}{r}$ Teiler d, sodass $\omega(d) = r$. Wir können daher für jedes $t \geq 0$ schreiben

$$\mu \chi_t \ast 1(n) = \sum_{\substack{d|n \\ \omega(d) \leq t}} \mu(d) = \sum_{r \leq t} (-1)^r \binom{k}{r} = (-1)^t \binom{k-1}{t},$$

wobei die letzte Gleichung leicht mittels Induktion nach t folgt.

Korollar 13.2. Sei A eine endliche Teilmenge der positiven ganzen Zahlen und P eine Menge von Primzahlen. Wir setzen

$$A_d := \{a \in A: a \equiv 0 \mod d\},$$

$$P(y) := \prod_{p \in P, p \leq y} p \quad \text{und}$$

$$S(A, P, y) := \#\{a \in A: (a, P(y)) = 1\}.$$

Dann gilt für jedes ganze $h \geq 0$,

$$\sum_{d|P(y) \atop \omega(d) \leq 2h+1} \mu(d) A_d \leq S(A, P, y) \leq \sum_{d|P(y) \atop \omega(d) \leq 2h} \mu(d) A_d. \quad (13.4)$$
13.2. DAS KOMBINATORISCHE SIEB VON BRUN

Schauen wir uns nun an, wie dieses Resultat unsere obere Abschätzung für $\pi(x)$ erheblich gegenüber dem Sieb des Eratosthenes verbessert.

Wir wählen nun im obigen Korollar $A = \{ n : n \leq x \}$ und $P = \mathbb{P}$, die Menge der Primzahlen. Dann folgt

$$\pi(x) \leq \sum_{d \mid P(y), \omega(d) \leq 2h} \mu(d) \left\lceil \frac{x}{d} \right\rceil + y = x \sum_{d \mid P(y), \omega(d) \leq 2h} \frac{\mu(d)}{d} + \mathcal{O} \left(y + \sum_{d \mid P(y), \omega(d) > 2h} \frac{1}{d} \right) \quad (13.5)$$

Der zweite der drei Fehlerterme ist nicht größer als y^{2h}, weil diese Größe alle ganzen Zahlen d mit $d \mid P(y)$ und $\omega(d) \leq 2h$ abschätzt. Die Summe über d im dritten Term lässt sich, für jeden Parameter $u \geq 1$, durch

$$\sum_{d \mid P(y)} \frac{u^{\omega(d)-2h}}{d} = u^{-2h} \prod_{p \leq y} \left(1 - \frac{1}{p} \right) \leq \exp \left\{ -2h \ln u + u \sum_{p \leq y} \frac{1}{p} \right\}$$

abschätzen. Für die optimale Wahl $u = 2h/\sum_{p \leq y} p^{-1}$ erhält man, dass diese Größe

$$\ll u (\ln y)^{-v}$$

ist, wobei wir $v = u \ln u - u$ gesetzte haben. Für $u > 5$ haben wir $v > 3$. Es ist leicht einzusehen, dass es, für y genügend groß, ein $u = u(y)$ gibt, mit $5 < u < 6$, sodass

$$h := \frac{1}{2} u \sum_{p \leq y} \frac{1}{p}$$

ganz ist. Unter diesen Umständen erhalten wir, für x genügend groß,

$$y^{2h} \leq y^{6 \ln \ln y + \mathcal{O}(1)} < x^{2/3}$$

sobald

$$y \leq x^{1/(10 \ln \ln x)} =: Y(x).$$

Indem wir alle obigen Abschätzungen zusammenführen, erhalten wir für die Wahl $y = Y(x)$,

$$\pi(x) \ll \frac{x \ln x}{\ln x}.$$

Zwar schlechter als die Schranken von Tschebyschow, aber trotzdem ist diese Resultat wegen der großen Allgemeinheit der Argumente bemerkenswert.
13.3 Anwendungen
Wir illustrieren hier die Resultate des vorigen Abschnitts anhand des Satzes von Brun für Primzahlzwillinge.
Es ist klar, dass die Differenz zweier ungerader Primzahlen immer zumindest 2 betragen muss. Sobald diese Differenz gleich 2 ist, nennen wir die zugehörigen Primzahlen Zwillinge, so zum Beispiel \{3, 5\}, \{5, 7\}, \{11, 13\}, \{17, 19\}, \{29, 31\} usw. Eine sehr bekannte Vermutung besagt, dass es unendlich viele dieser Primzahlzwillinge gibt.
Wir setzen
\[\mathcal{J} := \{ p: p + 2 \text{ ist prim} \} \quad \text{und} \quad J(x) := |\mathcal{J} \cap [1, x]|. \]
Basierend auf einem analytischen Ansatz und unter Zuhilfenahme heuristischer Verteilungen, vermuteten Hardy und Littlewood (1922), dass
\[J(x) \sim 2 \prod_{p>2} \left(1 - \frac{1}{(p-1)^2}\right) \frac{x}{(\ln x)^2} \ (x \to \infty). \quad (13.6) \]

Mittels der Brun’schen Methode können wir folgendes Resultat erzielen.

Satz 13.3. Für \(x \) gegen unendlich,
\[J(x) \ll x \left(\frac{\ln \ln x}{\ln x}\right)^2. \quad (13.7) \]
Damit erhalten wir auch folgendes

Korollar 13.4.
\[\sum_{p \in \mathcal{J}} \frac{1}{p} < \infty. \quad (13.8) \]

Bemerkung. Die Zahl
\[\sum_{p \in \mathcal{J}} \left(\frac{1}{p} + \frac{1}{p+2}\right) = 1,902160582538 \pm 0,00000001400 \]
wird Brun’sche Konstante genannt.

Beweis. Wir wenden Korollar [13.2] mit
\[\mathcal{A} = \{ m(m + 2): m \leq x \} \]
und \(\mathcal{P} \) gleich der Menge der Primzahlen an. Für \(1 \leq y \leq x \) erhalten wir, dass
\[J(x) \leq S(\mathcal{A}, \mathcal{P}, y) + y \leq \sum_{d|P(y), \omega(d) \leq 2h} \mu(d) A_d + y, \quad (13.9) \]
wobei \(A_d \) die Anzahl der Lösungen von
\[m(m + 2) \equiv 0 \mod d \quad (13.10) \]
in ganzen Zahlen \(m \leq x \) ist. Diese Gleichung entspricht

\[
\begin{align*}
 m &\equiv \text{mod} 2^n, \\
 m &\equiv 0 \text{ oder } -2 \text{ mod } p \quad (p \mid d, p \neq 2),
\end{align*}
\] (13.11)

wobei \(\nu = 1 \) oder 0 ist, je nachdem ob \(d \) gerade oder ungerade ist. Nach dem chinesischen Restsatz gibt es \(\rho(d) \) Lösungen modulo \(d \), wobei \(\rho \) eine streng multiplikative Funktion ist, die durch

\[
\rho(2) = 1, \quad \rho(p) = 2 \quad (p \geq 3)
\] (13.12)

definiert ist.

Jedes Intervall der Länge \(d \) beinhaltet \(\rho(d) \) Zahlen \(m \) die in \(A_d \) gezählt werden. Wir können daher schreiben

\[
A_d = x \frac{\rho(d)}{d} + \mathcal{O}(\rho(d)) \quad (\mu(d)^2 = 1).
\] (13.13)

Indem wir dies in (13.9) einsetzen und dieselben Berechnungen wie in (13.5) anstellen, erhalten wir

\[
J(x) \leq x \sum_{d \mid P(y)} \frac{\mu(d) \rho(d)}{d} + \mathcal{O} \left(y + \sum_{d \mid P(y)} \rho(d) + x \sum_{d \mid P(y)} \frac{\rho(d)}{d} \right).
\] (13.14)

Der Hauptterm ist

\[
\frac{1}{2} x \prod_{2 < p \leq y} \left(1 - \frac{2}{p} \right) \leq 2 x \prod_{p \leq y} \left(1 - \frac{1}{p} \right)^2 \sim 2 e^{-2 \gamma} x (\ln y)^{-2}.
\]

Indem wir, wie in der Anwendung oben, \(h = c \ln \ln y + \mathcal{O}(1) \) für eine geeignete Konstante \(c \) setzen und

\[
\ln y \sim c' \ln x / \ln \ln x
\]

mit \(c' \) ziemlich klein, können wir erreichen, dass der Fehlerterm kleiner ist als \(x / (\ln y)^2 \). Daraus folgt (13.7) und wir haben den Satz bewiesen. Der Korollar folgt mittels Abel’scher Summation. \(\square \)
Kapitel 14

Das Selberg Sieb

14.1 Nochmals Tschebischow

Wir erinnern uns, dass wir im obigen Kapitel versucht haben, $\pi(x) \ll x/\ln x$ zu zeigen. Dazu haben wir nach einander das Sieb des Eratosthenes und jenes von Brun angewandt. Damit erreichten wir $\pi(x) \ll x \ln \ln x$ beziehungsweise $\pi(x) \ll x \ln \ln x/\ln x$. Dazu hatten wir im Falle des Brun’schen Siebes die Möbius Funktion durch eine schwächere Variante ausgetauscht. Darüber hinaus verwendeten wir das Inklusion-Exklusions-Prinzip in der Form

$$\Phi(x, y) := \#\{n \leq x: p \mid n \implies p > y\} = \sum_{d \mid P(y)} \mu(d) \sum_{n \leq x \atop d \mid n} 1,$$

(14.1)

und schließlich die Gleichung

$$\Phi(x, y) = \sum_{n \leq x} \sum_{d \mid (n, P(y))} \mu(d).$$

(14.2)

Im Jahre 1947 hatte Selberg die brillante Idee die Möbius Funktion durch eine quadratische Form zu ersetzen, die optimal gewählt wurde, sodass die weiteren Abschätzungen minimal wurden. Genauer gesagt war seine entscheidende Beobachtung, dass für jede Folge reeller Zahlen $(\lambda_d)_{d \geq 1}$ mit $\lambda_1 = 1$

$$\sum_{d \mid k} \mu(d) \leq \left(\sum_{d \mid k} \lambda_d\right)^2$$

(14.3)

für jedes k galt.
Wenn wir diese Beobachtung in (14.2) benutzen, erhalten wir

\[
\Phi(x, y) \leq \sum_{n \leq x} \left(\sum_{d \mid (n, P(y))} \lambda_d \right)^2
\]

\[
= \sum_{n \leq x} \left(\sum_{d_1, d_2 \mid (n, P(y))} \lambda_{d_1} \lambda_{d_2} \right)
\]

\[
= \sum_{d_1, d_2 \mid P(y)} \lambda_{d_1} \lambda_{d_2} \sum_{n \leq x} 1
\]

\[
\leq x \sum_{d_1, d_2 \mid P(y)} \frac{\lambda_{d_1} \lambda_{d_2}}{\delta_{d_1} \delta_{d_2}} + O \left(\sum_{d_1, d_2 \leq y} |\lambda_{d_1}| |\lambda_{d_2}| \right),
\]

wobei wir die erste Summe als Hauptterm und die \(O\)-Summe als Fehlerterm interpretieren können.

Nun nehmen wir der Einfachheit halber an, dass

\[
\lambda_d = 0 \quad \forall d > y.
\]

Damit erhalten wir, dass

\[
\Phi(x, y) \leq x \sum_{d_1, d_2 \leq y} \frac{\lambda_{d_1} \lambda_{d_2}}{\delta_{d_1} \delta_{d_2}} + O \left(\sum_{d_1, d_2 \leq y} |\lambda_{d_1}| |\lambda_{d_2}| \right),
\]

(14.4)

Wenn wir jetzt noch zusätzlich annehmen, dass \(|\lambda_d| \leq 1\), dann liefert uns (14.4) einen Fehlerterm \(O(y^2)\), welcher, für \(y < x\), kleiner als der Fehlerterm ist, den wir durch das Brun’sche Sieb gewonnen haben. Damit scheint es vernünftig zu erwarten, dass das Selberg Sieb uns eine Verbesserung der oberen Schranke von \(\Phi(x, y)\) und somit von \(\pi(x)\) liefert.

Wir wollen nun den Hauptterm in (14.4) abschätzen. Die zentrale Idee ist die Summe

\[
\sum_{d_1, d_2 \leq x} \frac{\lambda_{d_1} \lambda_{d_2}}{\delta_{d_1} \delta_{d_2}}
\]

als eine quadratische Form in \((\lambda_d)_{d \leq y}\) zu sehen und diese zu minimieren. Wir können schreiben

\[
\sum_{d_1, d_2 \leq y} \frac{\lambda_{d_1} \lambda_{d_2}}{\delta_{d_1} \delta_{d_2}} = \sum_{d_1, d_2 \leq y} \frac{\lambda_{d_1} \lambda_{d_2}}{\delta_{d_1} \delta_{d_2}} (d_1, d_2)
\]

\[
= \sum_{d_1, d_2 \leq y} \frac{\lambda_{d_1} \lambda_{d_2}}{\delta_{d_1} \delta_{d_2}} \sum_{\delta \mid (d_1, d_2)} \varphi(\delta)
\]

\[
= \sum_{\delta \leq y} \varphi(\delta) \sum_{d_1, d_2 \leq y} \frac{\lambda_{d_1} \lambda_{d_2}}{\delta_{d_1} \delta_{d_2}}
\]

\[
= \sum_{\delta \leq y} \varphi(\delta) \left(\sum_{d \leq y} \frac{\lambda_d}{d} \right)^2.
\]
14.1. NOCHMALS TSCHEBISCHOW

Daher hat sich mit der Transformation

\[u_\delta := \sum_{\frac{d}{\delta} \leq y} \lambda_d \frac{1}{d}, \]

(14.5)

die ursprüngliche quadratische Form diagonalisiert zu

\[\sum_{\delta \leq y} \varphi(\delta) u_\delta^2. \]

Unser nächstes Ziel ist es nun, diese Diagonalform (wenn möglich) zu minimieren. Wir erinnern uns, dass wir die Folge \((\lambda_d)\) so gewählt haben, dass \(\lambda_1 = 1\) und \(\lambda_d = 0\) für \(d > y\) ist. Gleichung (14.5) sagt uns nun, dass wir somit auch Bedingungen an \((u_\delta)\) haben. Diese können wir mittels der Möbius Inversionsformel berechnen. Wir erhalten

\[\frac{\lambda_\delta}{\delta} = \sum_{\delta \mid d} \mu \left(\frac{d}{\delta}\right) u_d. \]

Damit haben wir die Bedingungen

\[u_\delta = 0 \quad \forall \delta > y \]

und

\[\sum_{\delta < y} \mu(\delta) u_\delta = 1. \]

(14.6)

Nun verwenden wir (14.6) um zu schreiben

\[\sum_{\delta \leq y} \varphi(\delta) u_\delta^2 = \sum_{\delta \leq z} \varphi(\delta) \left(u_\delta - \frac{\mu(\delta)}{\varphi(\delta) V(y)} \right) + \frac{1}{V(y)}, \]

wobei

\[V(y) := \sum_{d \leq z} \frac{\mu(d)^2}{\varphi(d)}. \]

(14.7)

Aus dieser Gleichung können wir direkt schließen, dass die Form \(\sum_{\delta \leq y} \varphi(\delta) u_\delta^2\) ein Minimum mit Wert \(1/V(z)\) an der Stelle

\[u_\delta = \frac{\mu(\delta)}{\varphi(\delta) V(y)} \]

hat. Mit dieser Wahl der \(u_\delta\) und somit der Wahl

\[\lambda_\delta = \delta \sum_{\frac{d}{\delta} \leq y, \delta d} \frac{\mu(d/\delta) \mu(d)}{\varphi(d) V(y)} \]

(14.8)

für \(\lambda_\delta\) erhalten wir

\[\Phi(x, y) \leq \frac{x}{V(y)} + \mathcal{O} \left(\sum_{d_1, d_2 \leq y} |\lambda_{d_1}| |\lambda_{d_2}| \right). \]
Es bleibt die Analyse des O-Fehlerterms von oben. Wenn wir (14.8) verwenden, erhalten wir

$$V(y)\lambda_\delta = \delta \sum_{d \leq y} \frac{\mu(d/\delta)\mu(d)}{\varphi(d)} = \delta \sum_{t \leq \frac{y}{\delta}} \frac{\mu(t)\mu(\delta t)}{\varphi(\delta t)}$$

$$= \delta \sum_{t \leq \frac{y}{\delta}} \frac{\mu(t)^2\mu(\delta)}{\varphi(\delta)\varphi(t)} = \mu(\delta) \prod_{p|\delta} \left(1 + \frac{1}{p-1}\right) \sum_{t \leq \frac{z}{\delta}} \frac{\mu(t)^2}{\varphi(t)}.$$

Damit folgt, dass

$$|V(y)| |\lambda_\delta| \leq |V(z)|,$$

und somit

$$|\lambda_\delta| \leq 1 \quad \forall \delta.$$

Wenn wir dies alles zusammenfügen erhalten wir den folgenden

Satz 14.1. Für $x, y \to \infty$ gilt

$$\Phi(x, y) \leq \frac{x}{V(y)} + O\left(y^2\right),$$

wobei

$$V(y) := \sum_{d \leq y} \frac{\mu(d)^2}{\varphi(d)}.$$

Wir wollen hervorheben, dass die Folge (λ_d) durch (14.8) wohldefiniert ist. Wir hätten diese Definition schon von Anfang an geben können, aber auf diese Art wäre unsere Wahl nicht motiviert worden.

Von Satz [14.1] können wir folgende obere Schranke für $\pi(x)$ gewinnen.

Korollar 14.2. Für $x \to \infty$ gilt

$$\pi(x) \ll \frac{x}{\log x}.$$

Beweis. Wie gewöhnlich schreiben wir

$$\pi(x) \leq \Phi(x, y) + y$$

für ein $y = y(x) \leq x$ und verwenden Satz [14.1] um $\Phi(x, y)$ abzuschätzen. Dazu müssen wir eine untere Schranke für $\sum_{d \leq y} \frac{\mu(d)^2}{\varphi(d)}$ angeben und y geeignet wählen. Wir haben

$$\sum_{d \leq y} \frac{\mu(d)^2}{\varphi(d)} \geq \sum_{d \leq y} \frac{\mu(d)^2}{d} = \sum_{d \leq y} \frac{1}{d} \sum_{d \leq y} \frac{1}{d'},$$

wobei die Summe \sum' über alle nicht-quadratfreien ganzen Zahlen läuft. Wir bemerken, dass

$$\sum_{d \leq y} \frac{1}{d} \leq \frac{1}{4} \sum_{d \leq \frac{y}{2}} \frac{1}{d},$$
womit folgt, dass
\[
\sum_{d \leq y} \frac{\mu(d)^2}{\varphi(d)} \gg \ln y.
\]
Daher ist
\[
\pi(x) \ll \frac{x}{\ln y} + y^2.
\]
Wenn wir
\[
y := \left(\frac{x}{\ln x}\right)^{\frac{1}{2}}
\]
setzen, erhalten wir das gewünschte Ergebnis. \hfill \Box

Bemerkung. Die Hauptterme
\[
x \prod_{p < y} \left(1 - \frac{1}{p}\right) x \left(\sum_{d \leq y} \frac{\mu(d)^2}{\varphi(d)}\right)^{-1}
\]
im Brun’schen Sieb und im Selberg Sieb haben die selbe Größenordnung; beide sind \(O(x/\ln y)\). Aber der Fehlerterm im Selberg Sieb ist viel kleiner als jener im Sieb von Brun und das ist der Grund, warum wir in der Lage sind, die obere Tschebyschow-Schranke zu gewinnen.

14.2 Das Selberg Sieb

In diesem Abschnitt wollen wir nun die Methode von oben formalisieren.

Satz 14.3 (Selberg Sieb (1947)). *Nehmen wir an, es gibt ein \(X > 0\) und eine multiplikative Funktion \(f\) mit \(f(p) > 1\) für alle \(p \in \mathcal{P}\), sodass für jedes quadratfreie \(d\), das nur aus Primteilern in \(\mathcal{P}\) besteht, gilt
\[
\#A_d = \frac{X}{f(d)} + R_d
\]
(14.9)

für ein reelles \(R_d\). Wir schreiben
\[
f(n) = \sum_{d|n} f_1(d)
\]
(14.10)

mit einer multiplikativen Funktion \(f_1\) die eindeutig durch \(f\) beschrieben wird. Außerdem setzen wir
\[
V(y) := \sum_{d \leq y} \frac{\mu(d)^2}{f_1(d)}.
\]

Dann gilt
\[
S(A, \mathcal{P}, y) \leq \frac{X}{V(y)} + O\left(\sum_{d_1, d_2 \leq y} \left|R_{[d_1, d_2]}\right| \right) .
\]
Beweis. Sei \((\lambda_d)\) eine Folge reeller Zahlen, sodass

\[\lambda_1 = 1 \]

und

\[\lambda_d = 0 \quad \forall d > y. \]

Für \(a \in \mathcal{A}\) sei

\[D(a) := \prod_{p \in \mathcal{P}} a, \]

mit der Konvention, dass \(D(a) := 1\) wenn \(a \not\in \mathcal{A}_p\) für alle \(p \in \mathcal{P}\). Dann ist

\[\sum_{d|P(y), D(a)} \mu(d) \mu(d) \leq \left(\sum_{d|P(y), D(a)} \lambda_d \right)^2 = \left(\sum_{d|P(y)} \lambda_d \right)^2. \tag{14.11} \]

Wir betrachten nun \(S(\mathcal{A}, \mathcal{P}, y)\). Mit (14.11) erhalten wir, dass

\[S(\mathcal{A}, \mathcal{P}, y) = \sum_{\substack{a \in \mathcal{A} \setminus \mathcal{A}_p \setminus \mathcal{P}(y) \setminus \mathcal{A}_p \forall p}} 1 = \sum_{d|P(y)} \mu(d) \sum_{a \in \mathcal{A}_d} 1 \]

\[= \sum_{a \in \mathcal{A}} \left(\sum_{d|P(z), a \in \mathcal{A}_d} \mu(d) \right) \leq \sum_{a \in \mathcal{A}} \left(\sum_{d|P(z)} \lambda_d \right) \]

\[= \sum_{a \in \mathcal{A}} \left(\sum_{d_1, d_2 \leq z} \lambda_{d_1} \lambda_{d_2} \right)_{d_1, d_2, \mathcal{A}[d_1, d_2]} = \sum_{d_1, d_2 \leq z} \lambda_{d_1} \lambda_{d_2} \# \mathcal{A}[d_1, d_2]. \]

Mit (14.9) wird der Ausdruck oben zu

\[X \sum_{d_1, d_2 \leq z} \frac{\lambda_{d_1} \lambda_{d_2}}{f([d_1, d_2])} + O \left(\sum_{d_1, d_2 \leq z} \left| \lambda_{d_1} \right| \left| \lambda_{d_2} \right| \right)^2 \]

Hier können wir die erste Summe als einen Hauptterm betrachten, während der \(O\)-Term ein Fehlerterm ist. Wie oben behandeln wir den Hauptterm wie eine quadratische Form in
\(\lambda_d \), welche wir in eine Diagonalform überführen und minimieren. Mit (\ref{14.9}) erhalten wir

\[
\sum_{d_1, d_2 \mid P(z)} \frac{\lambda_{d_1} \lambda_{d_2}}{f(d_1)f(d_2)} f((d_1, d_2)) = \sum_{d_1, d_2 \leq z \atop d_1, d_2 \mid P(z)} \frac{\lambda_{d_1} \lambda_{d_2}}{f(d_1)f(d_2)} \sum_{\delta(d_1, d_2)} f_1(\delta).
\]

\[
= \sum_{\delta(d_1, d_2)} f_1(\delta) \sum_{d_1, d_2 \leq z \atop d_1, d_2 \mid P(z)} \frac{\lambda_{d_1} \lambda_{d_2}}{f(d_1)f(d_2)} = \sum_{\delta(d_1, d_2)} f_1(\delta) \left(\sum_{d \leq z \atop d \mid P(z)} \frac{\lambda_d}{f(d)} \right)^2.
\]

Somit erhalten wir mit der Transformation

\[
u_\delta := \sum_{d \leq z \atop d \mid P(z)} \frac{\lambda_d}{f(d)}, \tag{14.12}
\]

dass unsere quadratische Form zur Diagonalform

\[
\sum_{\delta \leq z \atop \delta \mid P(z)} f_1(\delta) u_\delta^2 \tag{14.13}
\]

wird. Die Möbius’sche Umkehrformel erlaubt es uns nun

\[
\frac{\lambda_d}{f(\delta)} \sum_{d \mid P(z) \atop \delta \mid d} \mu\left(\frac{d}{\delta}\right) u_d \tag{14.14}
\]

zu schreiben und, nachdem \(\lambda_d = 0 \) für \(d > z \) und \(\lambda_1 = 1 \) ist, erhalten wir

\[u_\delta = 0 \quad \text{sobald } \delta > z\]

und

\[
\sum_{\delta \leq z \atop \delta \mid P(z)} \mu(\delta) u_\delta = 1.
\]

Daher können wir wie zuvor schließen, dass

\[
\sum_{\delta \leq z \atop \delta \mid P(z)} f_1(\delta) u_\delta^2 = \sum_{\delta \leq z \atop \delta \mid P(z)} f_1(\delta) \left(u_\delta - \frac{\mu(\delta)}{f_1(\delta)V(z)} \right)^2 + \frac{1}{V(z)},
\]
woraus wir unmittelbar folgern, dass das Minimum der quadratischen Form aus (14.13) den Wert $1/V(z)$ an der Stelle

$$u_\delta = \frac{\mu(\delta)}{f_1(\delta)V(z)}$$

(14.15)

ist. Wir bemerken, dass wir hier verwendet haben, dass $f_1(p) = f(p) - 1 > 0$ für jedes $p \in \mathcal{P}$ ist. Aus der Multiplikativität von $f_1(\cdot)$ folgt, dass die Koeffizienten $f_1(d)$, die in unserer Form vorkommen, positiv sind.

Es bleibt noch die Analyse des Fehlerterms $O\left(\sum_{d_1,d_2 \leq z} |\lambda_{d_1}| |\lambda_{d_2}| |R_{[d_1,d_2]}|\right)$.

Genauer gesagt, suchen wir eine obere Schranke für $|\lambda_\delta|$ für alle $\delta \leq z$ und $\delta \mid P(z)$. Aus (14.12) und (14.14) folgt für solche δ, dass

$$V(z)\lambda_\delta = f(\delta) \sum_{d \leq z, \delta \mid d \mid P(z)} \frac{\mu(d/\delta)\mu(d)}{f_1(\delta)}$$

$$= f(\delta) \sum_{t \leq z/2, t \mid P(z)} \frac{\mu^2(t)\mu(\delta)}{f_1(t)f_1(\delta)}$$

$$= \mu(\delta) \left(\prod_{p \mid \delta} f(p) \right) \sum_{t \leq z/2, t \mid P(z)} \frac{\mu^2(t)}{f_1(t)}$$

$$= \mu(\delta) \left(\prod_{p \mid \delta} \left(1 + \frac{1}{f_1(p)}\right)\right) \sum_{t \leq z/2, t \mid P(z)} \frac{\mu^2(t)}{f_1(t)}$$

Damit ist

$$|V(z)| |\lambda_\delta| \leq |V(z)|,$$

und somit

$$|\lambda_\delta| \leq 1.$$

Folglich vereinfacht sich der Fehlerterm zu

$$O\left(\sum_{d_1,d_2 \leq z} |R_{[d_1,d_2]}|\right),$$

womit der Beweis des Satzes abgeschlossen ist. \qed
14.2. DAS SELBERG SIEB

Um nun Satz 14.3 verwenden zu können, brauchen wir untere Abschätzungen für $V(z)$. Nützliche Schranken sind zum Beispiel die folgenden.

Lemma 14.4. Wir verwenden die Notation aus Satz 14.3. Sei $\tilde{f}(\cdot)$ eine streng multiplikative Funktion definiert durch $\tilde{f}(p) := f(p)$ für alle Primzahlen p und wir setzen

$$\tilde{P}(z) := \prod_{p \notin \mathcal{P}, p < z} p.$$

Dann gilt

1. $V(z) \geq \sum_{p|\delta \Rightarrow \delta \in \mathcal{P}(z)} \frac{1}{\tilde{f}(\delta)}$ und

2. $f(\tilde{P}(z))V(z) \geq f_1(\tilde{P}(z)) \sum_{\delta \leq z} \frac{1}{f(\delta)}$.

Beweis. 1. Wir wollen die in $V(z)$ auftretenden Koeffizienten $1/f_1(d)$ mittels der Funktion f ausdrücken. Dazu bemerken wir, dass für eine quadratfreie ganze Zahl d mit $d \mid P(z)$ gilt, dass

$$\frac{f(d)}{f_1(d)} = \prod_{p|d} \frac{f(p)}{f_1(p)} = \prod_{p|d} \left(1 - \frac{1}{f(p)}\right)^{-1},$$

$$= \prod_{p|d} \sum_{n \geq 0} \frac{1}{f(p)^n} = \sum_{k} \frac{1}{f(k)}.$$

wobei die Summe $\sum' k$ über alle k läuft, die sich nur aus Primteilern von d zusammensetzen lassen. Dann folgt, dass

$$V(z) = \sum_{d \leq z \mid P(z)} \frac{\mu(d)^2}{f_1(d)} \sum_{k} \frac{1}{f(k)} \geq \sum_{\delta \leq z, \delta \mid P(z)} \frac{1}{f(\delta)}.$$

2. Ähnlich zu 1. erhalten wir,

$$\frac{f(\tilde{P}(z))}{f_1(P(z))}V(z) = \prod_{p \notin \mathcal{P}, p < z} \left(1 - \frac{1}{\tilde{f}(\delta)}\right)^{-1} \sum_{d \leq z \mid \tilde{P}(z)} \frac{\mu(d)^2}{f(d)} \sum_{k} \frac{1}{f(k)}$$

$$= \prod_{p \notin \mathcal{P}, p < z} \left(\sum_{n \geq 0} \frac{1}{f(p)^n}\right) \sum_{d \leq z \mid \tilde{P}(z)} \frac{\mu(d)^2}{f(d)} \sum_{k} \frac{1}{f(k)}$$

$$\geq \sum_{\delta \leq z} \frac{1}{f(\delta)}.$$

\[\square\]
KAPITEL 14. DAS SELBERG SIEB
Kapitel 15

Das große Sieb

15.1 Die analytische Form des großen Siebes

Es waren Davenport und Halberstam (1966) die als erste auf die analytische Form des großen Siebes aufmerksam wurden. Sei \(\{a_n\}_{n=0}^{\infty} \) eine Folge komplexer Zahlen, \(M, N \geq 0 \) beliebige ganze Zahlen und

\[
S(\alpha) := \sum_{M < n \leq M + N} a_n e(\alpha n) \quad (15.1)
\]

ein trigonometrisches Polynom, wobei wir \(e(u) := \exp(2\pi i u) \ (u \in \mathbb{R}) \) gesetzt haben. Die analytische Form des großen Siebes entspricht einer Ungleichung der Form

\[
\sum_{1 \leq i \leq R} |S(\alpha_i)|^2 \leq \Delta(N, \delta) \sum_{M < n \leq M + N} |a_n|^2 \quad (15.2)
\]
gültig für alle \(R \)-Tupel \(\{\alpha_1, \ldots, \alpha_R\} \) \(\delta \)-separierter reeller Zahlen, d.h.

\[
\min_{1 \leq i < j \leq R} \|\alpha_j - \alpha_i\| \geq \delta > 0, \quad (15.3)
\]
wobei \(\|u\| \) den Abstand der reellen Zahl \(u \) zur nächsten ganzen Zahl misst. Das Ziel dieser Abschnitts ist der folgende

Satz 15.1 (Montgomery & Vaughan; Selberg). Unter den obigen Voraussetzungen ist die große Sieb Ungleichung \((15.2) \) gültig für

\[
\Delta(N, \delta) = N + \delta^{-1} - 1. \quad (15.4)
\]

Bemerken wir zunächst, dass der Wert in (15.4) für gewisse Wahlen von α_i, N und δ optimal ist. Tatsächlich, für eine ganze Zahl $R \geq 1$ setzen wir $\alpha_j = j/R$ ($1 \leq j \leq R$), derart, dass $\delta = 1/R$, und betrachten für ein $N \equiv 1 \mod R$ den Fall $a_n = 1_{\mathbb{N}}(n/R)$ ($0 \leq n < N$). Dann gilt

\[
\sum_{1 \leq j \leq R} |S(\alpha_j)|^2 = \sum_{1 \leq j \leq R} \left| \sum_{0 \leq n \leq N-1 \atop n \equiv 0 \mod R} 1 \right|^2 = R \left(\frac{N-1}{R} + 1 \right)^2 = (N-1 + R) \left(1 + \frac{N-1}{R} \right) = \left(N - 1 + \frac{1}{\delta} \right) \sum_{0 \leq n < N} |a_n|^2.
\]

Der Beweis von Satz 15.1 fußt auf einem allgemeinen Dualitätsprinzip für Operatornormen mit dem adjungierten Operator in einem Banach-Raum. Wir benutzen den Fall der Endomorphismen von $\ell^2(\mathbb{C})$. Das Prinzip der Dualität nimmt dann folgende Gestalt an.

Lemma 15.2. Sei (c_{nr}) eine $N \times R$ Matrix mit komplexen Komponenten. Die drei folgenden Aussagen für eine positive reelle Zahl D sind äquivalent:

(i) \[
\sum_{n} \left| \sum_{r} c_{nr} x_n \right|^2 \leq D \sum_{n} |x_n|^2 \quad (\forall x_n \in \mathbb{C}),
\]

(ii) \[
\sum_{n,r} c_{nr} y_r x_n \left| \sum_{r} c_{nr} y_r x_n \right|^2 \leq D \sum_{n} |x_n|^2 \sum_{r} |y_r|^2 \quad (\forall x_n, y_r \in \mathbb{C}),
\]

(iii) \[
\sum_{n} \left| \sum_{r} c_{nr} y_r \right|^2 \leq D \sum_{r} |y_r|^2 \quad (\forall y_r \in \mathbb{C}).
\]

Beweis. Wir zeigen die Äquivalenz von (i) und (ii). Die von (ii) und (iii) folgt dann durch Tausch der Rollen von r und n.

(i) \Rightarrow (ii). Es gilt

\[
\left| \sum_{n,r} c_{nr} y_r x_n \right|^2 \leq \sum_{r} |y_r|^2 \sum_{n} \left| \sum_{r} c_{nr} x_n \right|^2 \leq D \sum_{n} |x_n|^2 \sum_{r} |y_r|^2,
\]

wobei der erste Schritt durch eine Anwendung der Ungleichung von Cauchy-Schwarz erfolgt ist.
15.1. DIE ANALYTISCHE FORM DES GROSSEN SIEBES

(ii) ⇒ (i). Für r setzen wir \(L_r := \sum_n c_{nr} x_n \) und wenden (ii) mit \(y_r = \overline{L_r} \) an. Dann gilt

\[
\left(\sum_r |L_r|^2 \right)^2 \leq D \sum_n |x_n|^2 \sum_r |L_r|^2,
\]

was (i) entspricht.

Im Folgenden wollen wir systematisch die Notation \((15.1)\) verwenden. Das folgende Lemma folgt direkt aus der Anwendung von Lemma 15.2.

Lemma 15.3. Seien \(\alpha_r (1 \leq r \leq R) \) reelle Zahlen. Die zwei folgenden Bedingungen, für reelle \(b_n \geq 0 \ (n \in \mathbb{Z}) \), sodass \(b_n > 0 \ (M < n \leq M + N) \), und ein reelles positives \(B \), sind äquivalent:

(i) \[
\sum_{1 \leq r \leq R} |S(\alpha_r)|^2 \leq B \sum_{M < n \leq M+N} |a_n|^2 / b_n \quad (\forall a_n \in \mathbb{C}),
\]

(ii) \[
\sum_{M < n \leq M+N} b_n \left| \sum_{1 \leq r \leq R} y_r e(n \alpha_r) \right|^2 \leq B \sum_{1 \leq r \leq R} |y_r|^2 \quad (\forall y_r \in \mathbb{C}).
\]

Beweis. Wir verwenden Lemma 15.2 mit \(c_{nr} = e(n \alpha_r) \sqrt{b_n} \). Indem wir \(a_n \) durch \(a_n \sqrt{b_n} \) ersetzen, wird (i) zu

\[
\sum_{1 \leq r \leq R} \left| \sum_{M < n \leq M+N} a_n \sqrt{b_n} e(\alpha_r n) \right|^2 \leq B \sum_{M < n \leq M+N} |a_n|^2 \quad (\forall a_n \in \mathbb{C}).
\]

Die Äquivalenz der Punkte (i) und (iii) von Lemma 15.2 liefert nun, dass

\[
\sum_{M < n \leq M+N} \left| \sum_{1 \leq r \leq R} y_r e(n \alpha_r) \sqrt{b_n} \right|^2 \leq B \sum_{1 \leq r \leq R} |y_r|^2 \quad (\forall y_r \in \mathbb{C}),
\]

was zu beweisen war.

Korollar 15.4. Sei \(B(\alpha) := \sum_{n \in \mathbb{Z}} b_n e(n \alpha) \) eine konvergente Fourier Reihe, sodass \(b_n \geq 0 \ (n \in \mathbb{Z}) \), \(b_n > 0 \ (M < n \leq M + N) \). Dann gibt es ein positives \(B \), sodass die Ungleichung

(i) \[
\sum_{1 \leq r \leq R} |S(\alpha_r)|^2 \leq B \sum_{M < n \leq M+N} |a_n|^2 / b_n \quad (\forall a_n \in \mathbb{C})
\]

sicher gilt, sobald

(ii) \[
\sum_{1 \leq r \leq R} y_r \overline{y_s} B(\alpha_r - \alpha_s) \leq B \sum_{1 \leq r \leq R} |y_r|^2 \quad (\forall y_r \in \mathbb{C})
\]
erfüllt ist.
Beweis. Indem man $B(\alpha_r - \alpha_s)$ in eine Reihe entwickelt und die Summation vertauscht, sieht man, dass (ii) der zweiten Ungleichung in Lemma 15.3 entspricht in welcher die Summe über ganz \mathbb{Z} läuft. Nachdem $b_n \geq 0$ folgt das Korollar unmittelbar.

Nun wollen wir eine Funktion konstruieren, die den Bedingungen aus Korollar 15.4 genügt. Wir wollen voraussetzen, dass

\begin{enumerate}[(a)]
 \item $b_n \geq 0 \quad (n \in \mathbb{Z}), \quad b_n \geq 1 \quad (M < n \leq M + N),$
 \item $B(\alpha) = 0 \quad (\|\alpha\| \geq \delta),$
\end{enumerate}

wobei δ in (15.3) definiert ist. Es ist praktisch anzunehmen, dass $0 < \delta < \frac{1}{2}$; der Fall $\delta = \frac{1}{2}$ (möglich nur für $R = 2$) folgt dann mittels Grenzübergang. Sobald (a) und (b) erfüllt sind, liefert Behauptung (i) von Korollar 15.4 das die große Sieb Ungleichung (15.2) für

$$\Delta(N, \delta) = B(0) \quad (15.5)$$

gilt.

Im Rest dieses Abschnittes werden wir nun eine explizite Folge $\{b_n\}_{n \in \mathbb{Z}}$ Fourier Koeffizienten einer Funktion $B(\alpha)$ konstruieren.

Es ist natürlich b_n als Wert einer Funktion $b \in L^1(\mathbb{R})$ zu schreiben, deren Fourier Transformierte

$$\hat{b}(\theta) := \int_{-\infty}^{\infty} b(t)e(-\theta t)dt$$

Support im Intervall $[-\delta, \delta]$ hat. Die Poisson-Formel

$$B(\alpha) := \sum_{n \in \mathbb{Z}} b(n)e(\alpha n) = \sum_{k \in \mathbb{Z}} \hat{b}(k - \alpha) \quad (15.6)$$

garantiert dann, dass (b) gilt.

Um zu überprüfen, dass die Poissonsche Summenformel wirklich anwendbar ist, wollen wir zuerst bemerken, dass $\hat{b} \in L^1(\mathbb{R})$, woraus wir die Integraldarstellung

$$b(t) = \int_{-\delta}^{\delta} \hat{b}(\theta)e(\theta t)d\theta \quad (15.7)$$

gewinnen. Genauer gesagt, $b(n)$ sind die Fourier Koeffizienten der stetigen periodischen Funktion $\beta(\alpha) := \sum_{k \in \mathbb{Z}} b(k - \alpha)$. Für $N \geq 1$ erhält man mit $|\alpha| \leq \frac{1}{2}$ dank (15.7), dass

$$\sum_{|n| \leq N} b(n)e(n\alpha) - \int_{-N-\frac{1}{2}}^{N+\frac{1}{2}} b(t)e(\alpha t)dt = \int_{-\delta+\alpha}^{\delta+\alpha} \lambda_\alpha(\theta) \sin ((2N+1)\pi\theta) d\theta \quad (15.8)$$

mit

$$\lambda_\alpha(\theta) := \hat{b}(\theta - \alpha) \left(\frac{1}{\sin(\pi\theta)} - \frac{1}{\pi\theta} \right).$$

Nachdem $|\pm\delta + \alpha| < 1$ (hier brauchen wir die Hypothese, dass $\delta < \frac{1}{2}$), gilt $\lambda_\alpha \in L^1[-\delta + \alpha, \delta + \alpha]$. Das Lemma von Riemann-Lebesgue erlaubt es uns, nun zu schließen, dass das letzte Integral in θ gegen 0 geht für $N \to \infty$. Nachdem $b \in L^1(\mathbb{R})$, folgt die Konvergenz der Reihe

$$\sum_{n \in \mathbb{Z}} b(n)e(\alpha n)$$
15.1. DIE ANALYTISCHE FORM DES GROSSEN SIEBES

gegen \(\hat{b}(-\alpha) = \beta(\alpha) \). Damit folgt \([15.6]\) für \(|\alpha| \leq \frac{1}{2} \) und mit der Periodizität für alle \(\alpha \).

Daher suchen wir jetzt eine integrierbare Funktion \(b \), sodass der Wert

\[
B(0) = \hat{b}(0) = \int_{-\infty}^{\infty} b(t) dt
\]

minimiert wird unter den Bedingungen

\[
\begin{aligned}
& b(t) \geq 0 \quad (t \in \mathbb{R}), \\
& b(t) \geq 1 \quad (M + 1 \leq t \leq M + N), \\
& \hat{b}(\theta) = 0 \quad (|\theta| \geq \delta).
\end{aligned}
\]

\\
\tag{15.10}

Der Fejér-Kernel erlaubt uns leicht eine erste Möglichkeit anzugeben. Für

\[
b(t) := C \sum_{\delta(M+1) \leq n \leq \delta(M+N)} \left(\frac{\sin \left(\frac{1}{2} \pi (n - \delta t) \right)}{\frac{1}{2} \pi (n - \delta t)} \right)^2
\]

gilt

\[
\hat{b}(\theta) = \frac{2C}{\delta} (1 - |\theta/\delta|)^+ \sum_{\delta(M+1) \leq n \leq \delta(M+N)} e(-n\theta/\delta),
\]

sodass \([15.10]\) sicher für \(C = \frac{1}{4} \pi^2 \) erfüllt ist. Damit folgt die Ungleichung

\[
\hat{b}(0) \leq \frac{1}{2} \pi^2 \left(N - 1 + \frac{1}{\delta} \right),
\]

die in den meisten Anwendungen genügt. Selberg hat bemerkt, dass das folgende Lemma mit einer besseren Wahl von \(b(t) \) operiert.

Lemma 15.5. Sei

\[
F(z) := \left(\frac{\sin \pi z}{\pi} \right)^2 \left(\sum_{n \geq 0} \frac{1}{(z-n)^2} - \sum_{n \geq 1} \frac{1}{(z+n)^2} + \frac{2}{z} \right).
\]

Dann ist \(F \) eine ganze Funktion in \(z \), sodass

\[
F(z) \ll e^{2\pi |z|}, \quad F(x) \geq \text{sgn}(x) \quad (x \in \mathbb{R}), \quad F(0) = 1
\]

und

\[
\int_{-\infty}^{\infty} (F(x) - \text{sgn}(x)) \, dx = 1.
\]

\tag{15.11}

Bemerkung. Mit \([15.11]\) ist klar, dass \(F \notin L^1(\mathbb{R}) \). Wir können nun die Abschätzung für \(F(z) \) in einem gewissen Sinne, wie die Tatsache interpretieren, dass \(\hat{F}(\theta) = 0 \) für \(|\theta| \geq 1 \).

Beweis. Die beiden ersten Behauptungen sind klar: wir setzen \(z = x + iy \) und erhalten für \(|y| \geq 1, \, |z \pm n|^2 \geq 1 + (|x| - n)^2 \) \((n \geq 0) \). Für die dritte Behauptung, erinnern wir uns an die Euler-Fomel

\[
\left(\frac{\sin \pi z}{\pi} \right)^2 \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2} = 1 \quad (z \in \mathbb{C})
\]
und wir bemerken, dass für $x > 0$

$$
\sum_{n \geq 1} \frac{1}{(x + n)^2} \leq \sum_{n \geq 1} \int_{x + n - 1}^{x + n} \frac{du}{u^2} = \frac{1}{x} = \sum_{n \geq 0} \int_{x + n}^{x + n + 1} \frac{du}{u^2} \leq \sum_{n \geq 0} \frac{1}{(x + n)^2}.
$$

Damit folgt, immer noch für $x > 0$, dass

$$
F(x) = \left(\frac{\sin \pi x}{\pi} \right)^2 \left(\sum_{n \in \mathbb{Z}} \frac{1}{(x - n)^2} - 2 \sum_{n \geq 1} \frac{1}{(x + n)^2} + \frac{2}{x} \right) \geq 1,
$$

und für $x < 0$, indem wir $y = -x$ setzen, dass

$$
F(x) = \left(\frac{\sin \pi x}{\pi} \right)^2 \left(-\sum_{n \in \mathbb{Z}} \frac{1}{(x - n)^2} + 2 \sum_{n \geq 1} \frac{1}{(y + n)^2} - \frac{2}{y} \right) \geq -1.
$$

Schließlich

$$
F(0) = \lim_{z \to 0} \left(\frac{\sin \pi z}{\pi z} \right)^2 = 1 \geq 0 = \text{sgn}(0).
$$

Zeigen wir nun (15.11). Es gilt

$$
\int_{-\infty}^{+\infty} (F(x) - \text{sgn}(x)) \, dx = \int_{0}^{\infty} (F(x) - 1) \, dx + \int_{0}^{\infty} (F(-y) + 1) \, dy
= \int_{0}^{\infty} (F(x) + F(-x)) \, dx = 2 \int_{0}^{\infty} \left(\frac{\sin \pi x}{\pi x} \right)^2 \, dx = 1.
$$

Abschluss des Beweises von Satz [15.1]. Wir setzen

$$
b(t) := \frac{1}{2} \left(F(\delta(t - M - 1)) + F(\delta(M + N - t)) \right). \tag{15.12}
$$

Damit erfüllt $b(t)$ die erste Bedingung von (15.10) und Gleichung (15.11) zeigt, dass b integrierbar ist auf \mathbb{R} und dass

$$
\int_{-\infty}^{+\infty} b(t) \, dt = N - 1 + \frac{1}{\delta}. \tag{15.13}
$$

Dies folgt unmittelbar aus der folgenden Identität

$$
b(t) = 1_{[M+1,M+N]}(t) + \frac{1}{2} \left(F(\delta(t - M - 1)) - \text{sgn}(\delta(t - M - 1)) \right)
+ \frac{1}{2} \left(F(\delta(M + N - t)) - \text{sgn}(\delta(M + N - t)) \right),
$$

die für $t \neq M + 1, M + N$ gültig ist. Darüber hinaus liefert eine Anwendung von Lemma ??, dass

$$
b(z) \leq e^{2\pi|\frac{3}{4}z|} \quad (z \in \mathbb{C}). \tag{15.14}
$$

Insbesondere ist b beschränkt auf \mathbb{R}. Nachdem $b \in L^1(\mathbb{R})$ folgt, dass $b \in L^2(\mathbb{R})$. Die Abschätzung (15.14) liefert mit dem Satz von Paley-Wiener, dass

$$
\hat{b}(\theta) = 0 \quad (|\theta| \geq \delta).
$$

Damit ist der Satz [15.1] bewiesen. \qed
15.2 Die arithmetische Form des großen Siebes

Sei \(\{a_n\}_{n=M+1}^{M+N} \) eine endliche Folge komplexer Zahlen und

\[
S(\alpha) := \sum_{M<n \leq M+N} a_n e(n\alpha).
\]

Wenden wir nun Satz 15.1 auf den Fall an, wo alle \(\alpha_r \) rationale Zahlen der Form \(\alpha_r = a/q \), \((a,q) = 1 \), \(q \leq Q \) sind. Wir haben für \(r \neq s \)

\[
\|\alpha_r - \alpha_s\| = \|a/q - a'/q'\| = \|(aq' - a'q)/qq'\| \geq 1/Q^2,
\]

was bedeutet, dass die \(\alpha_r 1/Q^2 \)-gut verteilt sind. Wir können daher schreiben, dass

\[
\sum_{q \leq Q} \sum_{1 \leq a \leq q \atop (a,q)=1} |S(a/q)|^2 \leq (N - 1 + Q^2) \sum_{M<n \leq M+N} |a_n|^2. \tag{15.15}
\]

Das Interesse in dieser Ungleichung liegt in der Tatsache, dass wir die Summe abschätzen können, indem wir eine explizite Funktion von \(q \) angeben, die von der Anzahl \(\omega(p) \) der Restklassen modulo \(p \) \((p \mid q) \) abhängt, die kein ganzes \(n \) beinhalten, sodass \(a_n \neq 0 \). Genauer gesagt, wir setzen für jede Primzahl \(p \)

\[
\omega(p) := \#\{h: 0 \leq h < p, n \equiv h \mod p \Rightarrow a_n = 0\} \tag{15.16}
\]

und

\[
g(q) := \mu(q)^2 \prod_{p \mid q} \frac{\omega(p)}{p - \omega(p)} \tag{15.17}
\]

(Wir können annehmen, dass \(\omega(p) < p \) für jedes \(p \), denn sonst wäre \(a_n \equiv 0 \).) Die Basis der arithmetischen Form des großen Siebes ist der folgende

Satz 15.6. Mit den Bezeichnungen von oben, gilt für \(q \geq 1 \),

\[
\left| \sum_{M<n \leq M+N} a_n \right|^2 \leq g(q) \sum_{1 \leq a \leq q \atop (a,q)=1} |S(a/q)|^2. \tag{15.18}
\]

Korollar 15.7 (Arithmetische Form des großen Siebes). Für jede endliche Folge komplexer Zahlen \(\{a_n\}_{M+1}^{M+N} \) und jede ganze Zahl \(Q \geq 1 \), gilt

\[
\left| \sum_{M<n \leq M+N} a_n \right|^2 \leq \frac{N - 1 + Q^2}{L} \sum_{M<n \leq M+N} |a_n|^2 \tag{15.19}
\]

mit

\[
L := \sum_{q \leq Q} g(q), \tag{15.20}
\]

wobei \(g(q) \) in (15.16) und (15.17) definiert ist.
Beweis von Satz 15.6 Wir müssen zeigen, dass für jede Folge \(\{a_n\} \) gilt

\[
|S(0)|^2 g(q) \leq \sum_{1 \leq a \leq q \atop (a,q)=1} |S(a/q)|^2.
\] (15.21)

Nachdem die Definition von \(\omega(p) \) unverändert bleibt, wenn man \(a_n \) durch \(a_n c(n \beta) \) ersetzt, entspricht Gleichung (15.21)

\[
|S(\beta)|^2 g(q) \leq \sum_{1 \leq a \leq q \atop (a,q)=1} |S(a/q + \beta)|^2 \quad (\beta \in \mathbb{R}).
\] (15.22)

Nehmen wir nun an (15.22) sei erfüllt für \(q \) und \(q' \) mit \((q,q') = 1 \). Mit dem chinesischen Restsatz folgt, dass

\[
\sum_{1 \leq a < p \atop (a,p)=1} \sum_{0 \leq h < p} |S(p,h)|^2 \leq (p - \omega(p)) \sum_{0 \leq h < p} |S(p,h)|^2
\] (15.23)

wobei wir

\[
S(p,h) := \sum_{M+N \leq M+N \atop n \equiv h \mod p} a_n
\]

gesetzt haben. Es sollte angemerkt werden, dass \(S(p,h) \) Null ist für zumindest \(\omega(p) \) Werte von \(h \) modulo \(p \). Mit der Cauchy-Schwarz-Ungleichung folgt, dass

\[
|S(0)|^2 \leq (p - \omega(p)) \sum_{0 \leq h < p} |S(p,h)|^2
\]
woraus dank (15.23) folgt
\[
\sum_{1 \leq a < p} |S(a/p)|^2 = p \sum_{0 \leq h < p} |S(p, h)|^2 - |S(0)|^2 \\
\geq \left(\frac{p}{p - \omega(p)} - 1 \right) |S(0)|^2 = g(p) |S(0)|^2.
\]
Damit ist (15.21) für \(q = p \) gezeigt und der Beweis ist abgeschlossen.

In Anbetracht der Gleichung \(S(0) = \sum_{0 \leq h < p} S(p, h) \) folgt
\[
p \sum_{0 \leq h < p} \left| S(p, h) - \frac{1}{p} S(0) \right|^2 = p \sum_{0 \leq h < p} |S(p, h)|^2 - |S(0)|^2
\]
woraus dank (15.23) folgt
\[
p \sum_{0 \leq h < p} \left| S(p, h) - \frac{1}{p} S(0) \right|^2 = \sum_{1 \leq a < p} |S(a/p)|^2.
\]
Mit (15.15) erhalten wir folgendes Resultat.

Satz 15.8. Mit der Notation von oben gilt
\[
\sum_{p \leq Q} p \sum_{0 \leq h < p} \left| S(p, h) - \frac{1}{p} S(0) \right|^2 \leq (N - 1 + Q^2) \sum_{M < n \leq M+N} |a_n|^2. \tag{15.24}
\]

Die Ungleichung (15.24) ist eine abgeschwächte Form der großen Sieb Ungleichung (15.15), weil nur der Beitrag der \(q \), die prim sind, abgeschätzt wird. Es ist aber ein sehr nützliches Resultat.

Montgomery (1968) hat gezeigt, dass für ein quadratfreies \(q \)
\[
q \sum_{0 \leq h < q} \left| \sum_{d \mid q} \mu(d) d S(q/d, h) \right|^2 = \sum_{1 \leq a \leq q \atop (a,q)=1} |S(a/q)|^2.
\]
Indem wir (15.15) benutzen, erhalten wir, dass \(S(q/d, h) \) im Mittel über \(q \) und \(h \) in \([0, q - 1]\), nahe \((d/q)S(0)\) ist.

15.3 Anwendungen

Im Vergleich zur Methode von Brun, liefert das große Sieb eine bemerkenswert gute obere Schranke für die Anzahl \(J(x) \) der Primzahlzwillinge.

Satz 15.9. Für \(x \) gegen unendlich
\[
J(x) \leq (8C + o(1)) \frac{x}{(\ln x)^2} \tag{15.25}
\]
mit
\[
C := 2 \prod_{p \geq 3} \left(1 - \frac{1}{(p-1)^2} \right). \tag{15.26}
\]
Diese Abschätzung ist asymptotisch achtmal größer als der vermutete Wert für $J(x)$.

Beweis. Sei $\varepsilon > 0$. Wir benutzen (15.19) mit $N = \lfloor x \rfloor$, $Q = x^{1/2-\varepsilon}$, $M = 0$ und $a_n = 1$ wenn $P^{-}(n(n+2)) > Q$, $a_n = 0$ sonst. Damit erhalten wir

$$J(x) - J(\sqrt{x}) \leq (1 + o(1)) \frac{x}{L} \quad (15.27)$$

wobei L in (15.20) definiert ist mit $\omega(2) = 1$, $\omega(p) = 2$ ($p \geq 3$). Es gilt $g(q) = 2^\nu * h(q)/q$, wobei h eine multiplikative Funktion definiert durch

$$h(2) = 0, \quad h(2^\nu) = 2(-1)^{\nu-1} \quad (\nu \geq 2)$$
$$h(p) = \frac{4}{p-2} \quad (p > 2), \quad h(p^\nu) = \frac{2(-1)^{\nu-1}(p+2)}{p-2} \quad (p > 2, \nu \geq 2)$$

ist. Es ist einfach zu sehen, dass die Reihe $\sum_{d \geq 1} h(d)/d^\sigma$ absolut konvergiert für $\sigma > \frac{1}{2}$, womit

$$\sum_{q \leq y} g(q) = \sum \frac{h(d)2^\omega(m)}{m} \frac{d}{d} \sim \frac{3}{\pi^2} (\ln y)^2 \sum_{d \geq 1} \frac{h(d)}{d} \quad (y \to \infty),$$

wobei wir die Summe über m mittels partieller Integration zusammen mit der Abschätzung

$$\sum_{m \leq y} 2^\omega(m) = \sum_{m \leq y} \mu^2(m) \sim \frac{6}{\pi^2 y \ln y} \ln y$$

berechnet haben. Wir erhalten aus (15.27), dass

$$J(x) \leq \frac{(2C + o(1))x}{(\ln \sqrt{x})^2}$$

mit

$$C = \frac{\pi^2}{6} \left(\sum_{d \geq 1} \frac{h(d)}{d} \right)^{-1}$$
$$= \prod_p \left(1 - p^{-2} \right)^{-1} \frac{3}{2} \prod_{p \geq 3} \left(1 + \frac{4}{p(p-2)} - \frac{2(p+2)}{p^2(p-2)(1+p^{-1})} \right)^{-1}$$
$$= 2 \prod_{p \geq 3} \left(1 - \frac{1}{(p-1)^2} \right),$$

woraus das gewünschte folgt. □

Unser zweites Resultat beschäftigt sich mit Primzahlen in arithmetischen Progressionen. Wir wissen bereits vom Primzahlsatz in arithmetischen Progressionen beziehungsweise vom Satz von Siegel-Walfisz, dass

$$\pi(x, k, a) \sim \frac{\pi(x)}{\varphi(k)} \sim \frac{x}{\varphi(k) \ln x}.$$

Wir wollen nun zeigen, dass dies auch für „kleine Intervalle“ gilt.
Satz 15.10 (Brun-Titchmarsh). Seien x und y positive und k und a relativ prime ganze Zahlen. Wenn $y/k \to \infty$, dann gilt

$$\pi(x+y,k,a) - \pi(x,k,a) \leq \frac{(2 + o(1))y}{\varphi(k)\ln(y/q)}. \quad (15.28)$$

Beweis. Die linke Seite von (15.28) ist höchstens gleich

$$\sum_n a_n + \pi(\sqrt{y}/k), \quad (15.29)$$

wobei $a_n := 1$ wenn $x < a + nk \leq x + y$ und $P^-(a + kn) > \sqrt{y}/k$ und $a := 0$ sonst. Der zweite Term in (15.29) wird vom Fehlerterm absorbiert. Mit der Notation des großen Siebes, gilt $N \leq y/k + 1$ und $\omega(p) \geq 1$ für jede Primzahl p, sodass $p \leq \sqrt{y}/k$ und $p \neq k$. Wir erhalten also für jedes $Q \geq \sqrt{y}/k$

$$\sum_n a_n \leq \frac{y/k + Q^2}{L} \quad (15.30)$$

mit

$$L := \sum_{m \leq Q \atop (m,k)=1} \frac{\mu(m)^2}{m} \prod_{p|m} \frac{1}{p-1} = \sum_{m \leq Q \atop (m,k)=1} \frac{\mu(m)^2}{\varphi(m)}. $$

Nachdem jede ganze Zahl $n \leq Q$ sich eindeutig als $n = mdt$ mit $(m,k) = 1$, $\mu(m)^2 = 1$, $d \mid m^\infty$, $t \mid k^\infty$ schreiben lässt, können wir

$$\sum_{n \leq Q} \frac{1}{n} \leq \sum_{m \leq Q \atop (m,k)=1} \frac{\mu(m)^2}{m} \sum_{d \mid m^\infty} \frac{1}{d} \sum_{t \mid k^\infty} \frac{1}{t} = \sum_{m \leq Q \atop (m,k)=1} \frac{\mu(m)^2}{m} \frac{m}{\varphi(m)} \frac{k}{\varphi(k)}$$

schreiben, woraus folgt, dass

$$L \geq \frac{\varphi(k)}{k} \ln Q.$$

Indem wir diese Ungleichung in (15.30) einsetzen und $Q = \sqrt{y/k}/\ln(y/q)$ wählen, erhalten wir das gewünschte Resultat. \qed
KAPITEL 15. DAS GROSSE SIEB
Kapitel 16

Mittelwertsätze

16.1 Die Ungleichung von Pólya-Vinogradov

Satz 16.1. Für jeden nicht-trivialen Character χ modulo d gilt

$$\sum_{M+1 \leq n \leq M+N} \chi(n) \ll d^{1/2} \log d$$

für alle M, N.

16.2 Gauss Summen

$$|\tau(\chi)| = d^{1/2}$$ \hspace{1cm} (16.1)

$$\chi(n) = \frac{1}{\tau(\chi)} \sum_{1 \leq a \leq d} \overline{\chi}(a) e\left(\frac{na}{d}\right)$$ \hspace{1cm} (16.2)

16.3 Gewichtete Summen mit Dirichlet Charakteren

Satz 16.2 (Erste veränderte Große-Sieb-Ungleichung). Sei $(a_n)_{n \geq 1}$ eine Folge komplexer Zahlen und x, z positive ganze Zahlen. Dann

$$\sum_{d \leq z} \frac{d}{\varphi(d)} \sum_{\chi} |n \leq x a_n \chi(n)|^2 \leq (z^2 + 4\pi x) \sum_{n \leq x} |a_n|^2,$$ \hspace{1cm} (16.3)

wobei die Summe \sum' über alle primitiven Charaktere modulo d läuft.

Beweis. Sei $d \leq z$ fix und sei n relativ prim zu d. Sei χ ein primitiver Character modulo d. Wir multiplizieren (16.2) mit a_n, summieren über $n \leq x$ und quadrieren. Mit (16.1) erhalten wir

$$\left|\sum_{n \leq x} a_n \chi(n)\right|^2 = \frac{1}{d} \sum_{1 \leq a \leq d} \overline{\chi}(a) \sum_{n \leq x} a_n e\left(\frac{an}{d}\right)^2.$$
Wir summieren diese Gleichung nun über alle primitiven Charaktere χ modulo d und erhalten

\[
\sum_{\chi} \left| \sum_{n \leq x} a_n \chi(n) \right|^2
= \frac{1}{d} \sum_{\chi} \left| \sum_{1 \leq a \leq d} \overline{\chi(a)} \sum_{n \leq x} a_n e\left(\frac{an}{d}\right) \right|^2
\leq \sum_{\chi} \left| \sum_{1 \leq a \leq d} \overline{\chi(a)} \sum_{n \leq x} a_n e\left(\frac{an}{d}\right) \right|^2
= \frac{1}{d} \sum_{1 \leq a \leq d} \sum_{1 \leq b \leq d} \left(\sum_{n \leq x} a_n e\left(\frac{an}{d}\right) \right) \left(\sum_{n \leq x} b_m e\left(\frac{bn}{d}\right) \right) \sum_{\chi} \overline{\chi(a)} \chi(b),
\]

wobei, für eine komplexe Zahl z, mit \overline{z} ihre komplexe Konjugierte bezeichnet wird. Durch die Orthogonalitätsrelationen, folgt, dass $\sum_{\chi} \overline{\chi(a)} \chi(b)$ gleich $\varphi(d)$ ist, wenn $a \equiv b \pmod{d}$, und 0 sonst. Daher gilt

\[
\frac{d}{\varphi(d)} \sum_{\chi} \left| \sum_{n \leq x} a_n \chi(n) \right|^2 \leq \sum_{1 \leq a \leq d} \sum_{n \leq x} a_n e\left(\frac{an}{d}\right) \left(\sum_{1 \leq b \leq d} \sum_{m \leq y} b_m e\left(\frac{bn}{d}\right) \right) \sum_{\chi} \overline{\chi(a)} \chi(b),
\]

Schließlich summieren wir über $d \leq z$ und wenden die Große-Sieb-Ungleichung an.

Eine unmittelbare Folgerung aus Satz 16.2 und der Cauchy-Schwarz Ungleichung ist:

Korollar 16.3. Seien $(a_n)_{n \geq 1}$ und $(b_m)_{m \geq 1}$ zwei Folgen komplexer Zahlen und seien x, y, z positive ganze Zahlen. Dann gilt

\[
\sum_{d \leq z} \frac{d}{\varphi(d)} \sum_{\chi} \left| \sum_{n \leq x} \sum_{m \leq y} a_n b_m \chi(nm) \right| \leq (z^2 + 4\pi x)^{1/2}(z^2 + 4\pi y)^{1/2} \left(\sum_{n \leq x} |a_n|^2 \right)^{1/2} \left(\sum_{m \leq y} |b_m|^2 \right)^{1/2}, \quad (16.4)
\]

wobei die Summe \sum_{χ} über alle primitiven Charaktere modulo d läuft.

Wir wollen nun eine Variante von (16.4) zeigen, die uns im Beweis vom Satz von Bombieri-Vinogradov sehr nützlich sein wird.

Satz 16.4 (Zweite veränderte Große-Sieb-Ungleichung). Seien $(a_n)_{n \geq 1}$ und $(b_m)_{m \geq 1}$ Folgen
komplexer Zahlen und seien x, y, z ganze Zahlen. Dann gilt

$$\sum_{d \leq z} \frac{d}{\varphi(d)} \sum_{\chi \text{ max}} a_n b_m \chi(nm) \leq \sum_{n \leq x} \sum_{m \leq y \atop nm \leq u} a_n b_m \chi(nm) \lesssim (z^2 + x)^{1/2} (z^2 + y)^{1/2} \left(\sum_{n \leq x} |a_n|^2 \right)^{1/2} \left(\sum_{m \leq y} |b_m|^2 \right)^{1/2} \log(2xy), \quad (16.5)$$

wobei die Summe \sum' über alle primitiven Charaktere modulo d läuft.

Beweis. Klärerweise werden wir für den Beweis von (16.5) versuchen (16.4) zu verwenden. Dazu müssen wir mit der Bedingung $mn \leq u$ umgehen. Zuerst bemerken wir, dass wir oBdA annehmen können, dass $u = k + 1/2$ mit einer ganzen Zahl $0 \leq k \leq xy$. Wir fixieren $d \leq z$, sei χ ein primitiver Charakter modulo d und sei $T > 0$. Dann erhalten wir

$$\sum_{n \leq x} \sum_{m \leq y \atop nm \leq u} a_n b_m \chi(nm) = \int_{-T}^{T} A(t, \chi) B(t, \chi) \frac{\sin(t \log u)}{\pi t} \, dt + O \left(\frac{1}{T} \sum_{n \leq x} \sum_{m \leq y} \left| \frac{a_n b_m}{\log \frac{nm}{u}} \right| \right), \quad (16.6)$$

wobei

$$A(t, \chi) := \sum_{n \leq x} \frac{a_n \chi(n)}{n^{it}}, \quad B(t, \chi) := \sum_{m \leq y} \frac{b_m \chi(m)}{m^{it}}.$$

Wir bemerken, dass durch unsere Voraussetzungen an u gilt, dass

$$\left| \log \frac{nm}{u} \right| \gg \frac{1}{u} \gg \frac{1}{xy}$$

und

$$\sin(t \log u) \ll \min\{1, |t| \log(2xy)\}.$$

Wenn wir dies in (16.6) verwenden, erhalten wir

$$\left| \sum_{n \leq x} \sum_{m \leq y \atop nm \leq u} a_n b_m \chi(nm) \right| \lesssim \int_{-T}^{T} |A(t, \chi) B(t, \chi)| \min \left\{ \frac{1}{|t|}, \log(2xy) \right\} \, dt + \frac{xy}{T} \sum_{n \leq x} \sum_{m \leq y} |a_n b_m|.$$
Eine Anwendung der Cauchy-Schwarz Ungleichung liefert, dass

\[\sum_{n \leq x} \sum_{m \leq y \atop nm \leq u} \chi(nm) \]

\[\ll \int_{-T}^{T} |A(t, \chi)B(t, \chi)| \min \left\{ \frac{1}{|t|}, \log(2xy) \right\} dt + \frac{x^{3/2}y^{3/2}}{T} \left(\sum_{n \leq x} |a_n|^2 \right)^{1/2} \left(\sum_{m \leq y} |b_m|^2 \right)^{1/2} . \]

Wir nehmen das Maximum über \(u \) und dann summieren wir über \(\chi \) und \(d \leq z \), sodass

\[\sum_{d \leq z} \frac{d}{\varphi(d)} \sum_{\chi} \max_{u} \left| \sum_{n \leq x} \sum_{m \leq y \atop nm \leq u} a_n b_m \chi(nm) \right| \]

\[\ll \sum_{d \leq z} \frac{d}{\varphi(d)} \sum_{\chi} \int_{-T}^{T} |A(t, \chi)B(t, \chi)| \min \left\{ \frac{1}{|t|}, \log(2xy) \right\} dt \] \hspace{1cm} (16.7)

\[+ \frac{x^{3/2}y^{3/2}}{T} \sum_{d \leq z} \frac{d}{\varphi(d)} \sum_{\chi} \left(\sum_{n \leq x} |a_n|^2 \right)^{1/2} \left(\sum_{m \leq y} |b_m|^2 \right)^{1/2} . \]

Nun verwenden wir die Cauchy-Schwarz Ungleichung und Korollar 16.3 um obere Schranken für den ersten Term auf der rechten Seite von (16.7) zu bekommen:

\[\sum_{d \leq z} \frac{d}{\varphi(d)} \sum_{\chi} \int_{-T}^{T} |A(t, \chi)B(t, \chi)| \min \left\{ \frac{1}{|t|}, \log(2xy) \right\} dt \]

\[\leq \left(\sum_{d \leq z} \frac{d}{\varphi(d)} \sum_{\chi} \left| \sum_{n \leq x} a_n \chi(n) \right|^2 \right)^{1/2} \left(\sum_{d \leq z} \frac{d}{\varphi(d)} \sum_{\chi} \left| \sum_{m \leq y} b_m \chi(m) \right|^2 \right)^{1/2} \]

\[\times \int_{-T}^{T} \min \left\{ \frac{1}{|t|}, \log(2xy) \right\} dt \] \hspace{1cm} (16.8)

\[\leq (z^2 + 4\pi x)^{1/2} (z^2 + 4\pi y)^{1/2} \left(\sum_{n \leq x} |a_n|^2 \right)^{1/2} \left(\sum_{m \leq y} |b_m|^2 \right)^{1/2} (\log T + \log(2xy)). \]

Für den zweiten Term auf der rechten Seite von (16.7) bemerken wir, dass es \(\varphi(d) \) Charaktere modulo \(d \) gibt, und somit

\[\frac{x^{3/2}y^{3/2}}{T} \sum_{d \leq z} \frac{d}{\varphi(d)} \sum_{\chi} \left(\sum_{n \leq x} |a_n|^2 \right)^{1/2} \left(\sum_{m \leq y} |b_m|^2 \right)^{1/2} \]

\[\leq \frac{x^{3/2}y^{3/2}}{T} \left(\sum_{n \leq x} |a_n|^2 \right)^{1/2} \left(\sum_{m \leq y} |b_m|^2 \right)^{1/2} . \] \hspace{1cm} (16.9)

Wenn wir nun (16.7), (16.8) und (16.9) zusammenführen und \(T := x^{3/2}y^{3/2} \) setzen, erhalten wir die gewünschte Ungleichung.
16.4 Der Satz von Barban-Davenport-Halberstam

16.5 Der Satz von Bombieri-Vinogradov