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Abstract. We present a generalization of a result due to Thuswaldner and Tichy to the ring
of polynomials over a finite fields. In particular we want to show that every polynomial of

sufficiently large degree can be represented as sum of k-th powers, where the bases evaluated on

additive functions meet certain congruence restrictions.

1. Introduction

In the present paper we want to show a generalization of a result due to Thuswaldner and
Tichy [13] to the ring of polynomials over a finite field. In a recent paper they could prove that
for fixed positive integers j and m every sufficiently large positive integer N has a representation
of the form

N = nk1 + · · ·+ nks (sq(ni) ≡ j mod m, 1 ≤ i ≤ s),
where sq is the q-ary sum of digits function. This result has been further generalized to differ-
ent congruences for each summand by Pfeifer and Thuswaldner [12] and to arbitrary q-additive
functions by Wagner [14].

In order to carry these results over to the ring of polynomials over a finite field R := Fq[X] we
start with a definition of a number system in this ring. To this matter we fix a polynomial Q ∈ R
of positive degree d. It is easy to see that each A ∈ R admits a unique and finite Q-ary digital
expansion of the form

A =
∑
i≥0

DiQ
i(1.1)

with Di ∈ R and degDi < degQ. We call a function f : R → G, where G is an Abelian group,
strongly Q-additive if f(AQ+B) = f(A) + f(B). Thus, if we represent an element A ∈ R by its
Q-ary digital expansion (1.1), we may write

f(A) =
∑
i≥0

f(Di).

One simple example is the Q-ary sum of digits function, which is defined by

sQ(A) :=
∑
i≥0

Di.

As the results of Thuswaldner and Tichy are based on Waring’s Problem we take a closer look
at generalizations of this problem to the ring R. Let A ⊂ R and s be a positive integer. We call
A a basis of R of order s if for every N ∈ R there is at least one representation of the form

N = P1 + · · ·+ Ps with P1, . . . , Ps ∈ A.
We call A an asymptotic basis if this is true for all N of sufficiently large degree.

Now the generalization of Waring’s Problem is the question whether A := {Ak : A ∈ R} is an
asymptotic basis of R. This question was positively answered by Paley [11]. As in the case of
integers one is also interested in an asymptotic for the number of solutions as it is provided by the
circle method. The problem with R is, that if one has one representation, then one gets infinitely
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many by cancellation in the higher degree terms. In order to prevent this side effect one bounds
the degree of the basis. Therefore we are interested in the number of solutions of

N = P1 + · · ·+ Ps with P1, . . . , Ps ∈ A and degPi ≤ degN (i = 1, . . . , s).(1.2)

For A := {Ak : A ∈ R} this was considered independently by Car [1] and Kubota [9].
For A := {A : A ∈ R and A irreducible}, which corresponds to Goldbach’s Problem, Hayes [8]

considered the number of solutions.
Another variant is the question if it is possible to represent every polynomial N as the sum of

two irreducible polynomials and a kth power, i.e.,

N = P1 + P2 +Ak, P1, P2 irreducible, A ∈ R.

This problem was considered by Car in [2].
Finally there is a further variant which deals with the problem that even with the statement

in (1.2) we count some solutions twice. Therefore we could refine the problem a little bit further
and consider

N = P k1 + · · ·+ P ks with degN = nk,degPi = n (i = 1, . . . , s).(1.3)

This is called strict Waring’s Problem and was considered by Webb [15].
In the present paper we focus on the number of solutions of (1.2). We are interested in sets

with digital restrictions that are asymptotic bases for R. Throughout the rest of the paper let
fi denote a strongly Qi-additive function where Qi ∈ R are pairwise coprime polynomials and
di := degQi. Furthermore let Mi ∈ R and mi = degMi for i = 1, . . . , r.

We denote by
Pm = {A ∈ R : degA < m}

the set of polynomials of degree less than m. Then we want to consider the set

Cm(f ,J,M) = Cm(J) := {A ∈ Pm : f1(A) ≡ J1 mod M1, . . . , fr(A) ≡ Jr mod Mr}.

Moreover, let

(1.4) C(f ,J,M) = C(J) :=
⋃
m≥1

Cm(J).

Properties of similar sets have been investigated by Drmota and Gutenbrunner [5]. For estimates
of Weyl sums over these sets one may consider Madritsch and Thuswaldner [10].

We call r(N,n, s, k, q) the number of solutions of (1.2). Then Kubota [9] could prove the
following result.

Proposition 1.1 ([9, Theorem 30]). If 0 < ε < 1, degN < (k−1+ε)n, s ≥ 2k+1, 3 ≤ k < charFq,
then there exists δ > 0 such that

r(N,n, s, k, q) = S(N, s, k, q)q(s−k)n +O
(
q(s−k−δ)n

)
,

where
1� S(N, s, k, q)� 1.

The assumption that k ≥ 3 is motivated by the fact that if k = 2 then there are no minor arcs.
In this case the number of solutions has been considered by Carlitz [3, 4].

In this paper we want to count the number of solutions of (1.2) with A = C(f ,J,M). Then our
theorem for the polynomial Waring reads as follows.

Theorem 1.2. Let Q1, . . . , Qr ∈ R be relatively prime and for i ∈ {1, . . . , r} let fi be a Qi-additive
function. Choose M1, . . . ,Mr, J1, . . . , Jr ∈ R and set mi := degMi (i = 1, . . . , r). Suppose that
for every 0 6= R ∈ Pm1 × · · · × Pmr

there exists an A ∈ R such that

g0(A) = E

(
r∑
i=1

Ri
Mi

fi(A)

)
6= 1,
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where E is the character defined in (2.2). Let N ∈ R. If 3 ≤ k < p = char Fq and m =
ddegN/ke + 1, then for s ≥ k2k and for every N with sufficiently large degree we always get a
solution for

N = P k1 + · · ·+ P ks , with Pi ∈ Cm(f ,J,M) for i = 1, . . . , s.(1.5)

Moreover, let R(N,n, s, k, q, f ,J,M) denote the number of solutions of (1.5), then we get that

R(N,n, s, k, q, f ,J,M) = q−s
Pr

j=1mjr(N,n, s, k, q) +O
(
qn(s−k)−n/k

)
.

where r(N,n, s, k, q) is as in Proposition 1.1.

We split the proof into two major parts. First in Section 2 we collect some tools that we will
need in order to prove Theorem 1.2. Then in Section 3 we give the proof.

Remark 1.3. We can further generalize Theorem 1.2 such that every Pi for i = 1, . . . , s has its own
congruence set Cn,t(ft,Jt,Mt). This goes down the same lines but with tedious index notation.

Remark 1.4. In the same manner as in the following sections one can also prove a similar result
for the strict Problem of Waring. Therefore it suffices to replace the Theorem of Kubota [9] by
the one of Webb [15] and proceed as in the proof of Webb.

2. Preliminaries and Lemmata

We start by stating the definitions and settings for the proof of Theorem 1.2. All these objects
are standard in this field (see for instance [2, 9]) and we recall their definition briefly.

We set K := Fq(X) for the field of rational polynomials over Fq. Moreover, vectors will be
written in boldface, i.e., we will write for instance D := (D1, . . . , D`) where ` is an integer.

With R and K we have the analogues for the ring of “integers” and the field of “rationals”,
respectively. To get an equivalent for the “reals” we define a valuation ν (the inverse degree
valuation or valuation at infinity) as follows. Let A,B ∈ R, then

ν(A/B) := degB − degA(2.1)

and ν(0) := ∞. With help of this valuation we can complete K to the field K∞ := Fq((X−1)) of
formal Laurent series. Then we get

ν

(
+∞∑
i=−∞

aiX
i

)
= − sup{i ∈ Z : ai 6= 0}.

Thus for A ∈ R we have ν(A) = −degA.
For convenience if not stated otherwise we will always denote a polynomial in R by a big Latin

letter and a formal Laurent series in K∞ by a small Greek letter.
We equip the group (K∞,+) with a Haar measure and normalize it. To this matter we denote

by U(`) := {A ∈ K∞ : ν(A) < `}. We call U∞ := U(0) the unit interval. We normalize the Haar
measure on K∞ such that ∫

α∈U∞
1 · dα = 1.

Thus we get by the invariance of the Haar measure under addition that for all β ∈ K∞∫
ν(α−β)<n

1 · dα = q−n.

The next ingredient for the Weyl Sums are additive characters. Let α ∈ K∞, α =
∑ν(α)
i=−∞ aiX

i.
Then by Resα := a−1 we denote the residue of an element α. In a finite field Fq of characteristic
char Fq = p we define the additive character E by

E(α) := exp (2πi tr(Resα)/p) ,(2.2)

where tr : Fq → Fp denotes the usual trace of an element of Fq in Fp.
This character has the following basic properties which mainly correspond to well-known prop-

erties of the character exp(2πix).
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Lemma 2.1 ([9, Lemma 1]).
(1) If ν(α− β) > 1 then E(α) = E(β).
(2) E : K∞ → C is continuous.
(3) E is not identically 1.
(4) E(α+ β) = E(α)E(β).
(5) E(A) = 1 for every A ∈ Fq[X].
(6) For n ∈ Z and N ∈ R we have∫

α∈U(n)

E(αN)dα =

{
q−n if degN < n,

0 otherwise.

(7) For N,Q ∈ R we have∑
degA<degQ

E

(
A

Q
N

)
=

{
qdegQ if Q|N,
0 otherwise.

Now we need two further tools. The first one is the corresponding version of Weyl’s inequality.
Therefore we define the difference operator ∆` (` ≥ 0) for a function ϕ recursively by

∆0(ϕ(A)) := ϕ(A),

∆`+1(ϕ(A);D1, . . . , D`+1) := ∆`(ϕ(A+D`+1);D1, . . . , D`)−∆`(ϕ(A);D1, . . . , D`).

Lemma 2.2 ([10, Theorem 2.2]). Let Q1, . . . , Qr ∈ R be relatively prime and for i ∈ {1, . . . , r}
let fi be a Qi-additive function. Choose M1, . . . ,Mr ∈ R, set mi := degMi, and fix R ∈ Pm1 ×
· · · × Pmr

. If there exists H ∈ Rk and A ∈ R such that

E

(
r∑
i=1

Ri
Mi

∆k(fi(A); H)

)
6= 1,

then ∑
A∈Pn

E

(
αAk +

r∑
i=1

Ri
Mi

fi(A)

)
� qn(1−2−k−1γ),

where

γ = 2 +
k

2
+

1− |Φi,k(H; di)|2

diqdi

with some constant |Φi,k(H; di)| ∈ (0, 1).

The second one is an analogue to Hua’s Lemma for R.

Lemma 2.3 (cf. Theorem 8.13 in [6]). Let F (Y ) be a polynomial over R and let ` be an integer
such that ∆`(F (Y );Y1, . . . , Y`) ∈ R[Y, Y1, . . . , Y`] and

∆`(F (Y );Y1, . . . , Y`) 6= 0.

Then, for every ε > 0, ∫
α∈U∞

∣∣∣∣∣ ∑
P∈Pn

E(αF (P ))

∣∣∣∣∣
2`

dα� qn(2`−`+ε).

3. Proof of Theorem 1.2

The proof of Theorem 1.2 makes use of the circle method and we mainly follow Webb [15] and
Thuswaldner and Tichy [13]. We adopt their method and denote by R(N) := R(N,n, s, k,J,M, q)
the number of solutions of the equation

N = P k1 + · · ·+ P ks , (Pi ∈ Cn(J) for 1 ≤ i ≤ s).



WARING’S PROBLEM WITH DIGITAL RESTRICTIONS IN Fq [X] 5

The Weyl sum under consideration is defined as

Sn(α) :=
∑

P∈Cn(J)

E(αP k).

Hence, by Lemma 2.1(6) we get

R(N) =
∫
α∈U∞

Sn(α) · · ·Sn(α)E(−Nα)dα.(3.1)

In order to change the range of summation from Cn(J) to Pn we adopt an idea of Gelfond [7].
Thus we may rewrite Sn(α) as

Sn(α) = q−
Pr

j=1mj
∑

R∈Pm1×···×Pmr

∑
P∈Pn

E

(
r∑
i=1

Ri
Mi

(fi(P )− Ji)

)
E(αP k).

Plugging this into (3.1) yields

R(N) = q−s
Pr

j=1mj

∫
α∈U∞

∑
P1∈Pn

· · ·
∑
Ps∈Pn

∑
R∈Pm1×···×Pmr

× E

(
r∑
i=1

Ri
Mi

(fi(P1)− Ji)

)
· · ·E

(
r∑
i=1

Ri
Mi

(fi(Ps)− Ji)

)
× E(α(P k1 + · · ·+ P ks −N))dα.

We split the integral up into two parts according to R and get

R(N) = q−s
Pr

j=1mj (I1 + I2),(3.2)

where

I1 =
∫
α∈U∞

∑
P1∈Pn

· · ·
∑
Ps∈Pn

E(α(P k1 + · · ·+ P ks −N))dα,

I2 =
∫
α∈U∞

∑
P1∈Pn

· · ·
∑
Ps∈Pn

∑
0 6=R∈Pm1×···×Pmr

× E

(
r∑
i=1

Ri
Mi

(fi(P1)− Ji)

)
· · ·E

(
r∑
i=1

Ri
Mi

(fi(Ps)− Ji)

)
× E(α(P k1 + · · ·+ P ks −N))dα.

Noting Lemma 2.1(6) we get that

I1 = r(N,n, s, k, q)(3.3)

and we may apply Proposition 1.1.
As we will see, I2 will contribute to the error term. From now on we assume that R 6= 0. Then

we get
I2 =

∑
R1∈Pm

· · ·
∑

Rs∈Pm

IR

where

IR :=
∫
α∈U∞

s∏
t=1

Sn,t (α)E(−αN)dα,

Sn,t(α) :=
∑
P∈Pn

E

(
αP k +

r∑
i=1

Ri
Mi

(fi(P )− Ji)

)
.

To estimate IR we split the integral up into two parts according to s > 2k and get

|IR| ≤ sup
α,t

(|Sn,t(α)|s−2k

) max
t

(∫
α∈U∞

|Sn,t(α)|2
k

dα
)
.
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For the supremum we apply Lemma 2.2. The integral is estimated by the same trick as by
Thuswaldner and Tichy [13]. Noting that∫

α∈U∞
|Sn,i(α)|2

k

dα =
∑

P∈P2k
n

E

 r∑
i=1

Ri
Mi

2k−1∑
t=1

fi(Pt)− fi(Pt+2k−1)

 ,

where the sum is over all P ∈ P2k

n such that

P k1 + · · ·+ P k2k−1 = P k2k−1+1 + · · ·+ P k2k .

We estimate the sum with the number of solutions of this equation trivially and get∫
α∈U∞

|Sn,t(α)|2
k

dα�
∫
α∈U∞

∣∣∣∣∣ ∑
P∈Pn

E(αP k)

∣∣∣∣∣
2k

dα.(3.4)

For the last integral we apply Hua’s Lemma (Lemma 2.3) to obtain∫
α∈U∞

|Sn,i(α)|2
k

dα� qn(2k−k+ε).

Together with Lemma 2.2 for the supremum this yields for I2

I2 � qn(1−2−k−1−γ)(s−2k) qn(2k−k+ε) � qn(s−k)−n/k(3.5)

where γ is as in Lemma 2.2.
Plugging (3.3) and (3.5) into (3.2) we get

R(N,n, s, k, q, f ,J,M) = q−s
Pr

j=1mjr(N,n, s, k, q) +O
(
qn(s−k)−n/k

)
,

which proves the theorem.
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