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Résumé. The present paper deals with the summatory function of functions acting on the
digits of an q-ary expansion. In particular let n be a positive integer, then we call

n =
∑̀
r=0

dr(n)qr with dr(n) ∈ {0, . . . , q − 1}

its q-ary expansion. We call a function f strictly q-additive, if for a given value, it acts only
on the digits of its representation, i.e.,

f(n) =
∑̀
r=0

f (dr(n)) .

Let p(x) = α0x
β0 + · · · + αdx

βd with α0, α1, . . . , αd,∈ R, α0 > 0, β0 > · · · > βd ≥ 1 and at
least one βi 6∈ Z. Then we call p a pseudo-polynomial.

The goal is to prove that for a q-additive function f there exists an ε > 0 such that∑
n≤N

f (bp(n)c) = µfN logq(p(N)) +NFf,β0
(
logq(p(N))

)
+O

(
N1−ε) ,

where µf is the mean of the values of f and Ff,β0 is a 1-periodic nowhere differentiable
function.

This result is motivated by results of Nakai and Shiokawa and Peter.

1. Introduction

Let q ≥ 2 be an integer. Then we can represent every positive integer n in a unique way as

n =
∑̀
r=0

dr(n)qr with dr(n) ∈ {0, . . . , q − 1}.(1.1)

We call this the q-ary representation of n with q the base and {0, . . . , q− 1} the set of digits.
If a function f acts only on the digits of a representation, i.e.,

f(n) =
∑̀
r=0

f (dr(n)qr) ,
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where n is as in (1.1), then we call it q-additive. If this action of f is independent of the
position of the digit, i.e.,

f(n) =
∑̀
r=0

f (dr(n)) ,

then we call f strictly q-additive. In the following we will concentrate on this type of functions.
A simple example of a strictly q-additive function is the sum-of-digits function sq which is

defined by

sq(n) =
∑
r≥0

dr(n),

where n is again as in (1.1). Strictly q-additive functions have been investigated from several
points of view. In the present paper we want to concentrate on arithmetical properties and,
in particular, on the summatory function of f on pseudo-polynomial values.

Before we present the result we want to give an overview on what is known for the sum-
matory function in connection with the sum-of-digits function. One of the first results in that
direction is due to Delange [1] who was able to show∑

n≤N
sq(n) =

q − 1

2
N logqN +NF

(
logqN

)
,

where logq is the logarithm to base q and F is a 1-periodic, continuous and nowhere differen-
tiable function. Remarkable about this result is the lack of an error term.

The moments of the sum-of-digits function were considered by Kirschenhofer [8] and by
Grabner et al. [6]. All the methods used in this paper are based on Fourier analysis and in
particular on the estimation of exponential sums. For different methods originating from the
analysis of algorithms such as Mellin’s formula elegant proofs have been shown by Flajolet et
al. [2] and Grabner and Hwang [5]. Generalizations to number systems in number fields were
done by Thuswaldner [15] and Gittenberger and Thuswaldner [4].

Apart from the sequence of the positive integers others like the primes or the integer values
of polynomials are of interest. For the case of primes the summatory function of the sum-of-
digits function was investigated by Shiokawa [14] whereas Mauduit and Rivat considered the
distribution in residue classes. They also investigated the uniform distribution modulo 1 of
(αsq(bncc))n≥1 (with α an irrational and b·c the floor function) with 1 ≤ c ≤ 7

5 in [10], and

with c = 2 in [11]. The distribution for the case c = 1 goes back to Gelfond [3].
Similar ideas are needed in order to construct a normal number one is also interested in the

distribution of the digits in an expansion. A normal number x ∈ R is, informally speaking,
a number in whose digital expansion every block of length k occurs asymptotically equally
often. In a paper by Nakai and Shiokawa [12] they constructed such a normal number by
concatenating the integer part of a pseudo-polynomial sequence, i.e. a sequence (bp(n)c)n≥1
where

p(x) = α0x
β0 + α1x

β1 + · · ·+ αdx
βd(1.2)

with α0, β0, . . . , αd, βd ∈ R, α0 > 0, β0 > β1 > · · · > βd ≥ 1 and at least one βi 6∈ Z. Since
we will often use β0 we will set β := β0 for short. Nakai and Shiokawa gained the following
result as a corollary.
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Theorem ([12, Corollary 2]). Let p be as in (1.2). Then∑
n≤N

sq(bp(n)c) =
q − 1

2
N logq p(N) +O(N)

where logq denotes the logarithm to base q.

Now we draw our attention towards a recent result by Peter [13] who considered polynomial
sequences of the form

(⌊
αnk

⌋)
n≥1 where α is one or an irrational of finite type. In particular

he could show the following.

Theorem ([13, Theorem]). Let q, k ≥ 2 be integers, and α = 1 or α > 0 an irrational of
finite type. There are c ∈ R and ε > 0 such that∑

n≤N
sq(
⌊
αnk

⌋
) =

q − 1

2
N logq(αN

k) + cN +NF
(

logq(αN
k)
)

+O(N1−ε),

with N ≥ 1 and logq the logarithm to base q.

Our aim is now to combine the last two results and to generalize them to arbitrary q-
additive functions instead of the sum-of-digits function.

In order to state the result in a more convenient way we need some definitions. For x ∈
R we denote by bxc the floor function and by {x} := x − bxc the fractional part of x,
respectively. Furthermore we denote by ‖x‖ the distance of x to the nearest integer, i.e.,
‖x‖ := min({x}, 1− {x}). Let ψ be the centralized fraction function defined by

ψ(x) = x− bxc − 1

2
= {x} − 1

2
.(1.3)

Moreover, we define

µf :=

q−1∑
a=0

f(a)

Jf,β(x) :=

∫ x

0

q−1∑
a=0

f(a)

(
ψ

(
t− a+ 1

q

)
− ψ

(
t− a

q

))
t
1
β
−1

dt, x ≥ 0, q ∈ N, and

Ff,β(t) := µf (1− {t}) +
1

β
q(1−{t})/β

∑
n≥0

q
−n
β Jf,β(qn−1+{t}), t ∈ R.

(1.4)

Now we are able to state our result.

Theorem 1.1. Let q ≥ 2 be an integer and f be a strictly q-additive function with f(0) = 0.
If p is a pseudo-polynomial as defined in (1.2), then there exists ε > 0 such that∑

n≤N
f (bp(n)c) = µfN logq(p(N)) +NFf,β

(
logq(p(N))

)
+O

(
N1−ε) .(1.5)

Remark 1.1. We can show a similar result if f is q-additive but not necessarily strictly q-
additive. In this more general setting one has to keep track of the position of a digit in the
q-ary expansion throughout the whole proof. This leads to a more delicate periodic function
Ff,β which then depends on the integer value of logq(p(N)) (i.e., the position) too.
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The idea of proof is to consider each digit of an expansion according to its position within its
expansion. Then we will distinguish two ranges for the position which are treated in Sections
2 and 3 separately. In particular, we consider sums of the form

Ur,a(N) :=
∑

N<n≤2N
ψ

(
p(n)

qr+1
− a

q

)
.(1.6)

where a ∈ {0, . . . , q − 1} (the digit) and r (the position) lies in

1 ≤ qr+1 ≤ Nβ−1 and(1.7)

Nβ−1 ≤ qr+1 ≤ p(2N),(1.8)

respectively. Finally in Section 4 we apply those estimates in order prove Theorem 1.1.

2. Exponential sums

This section focuses on the estimation of (1.6) for r such that (1.7) holds. These estimates
will provide us with the error term. In particular, we will show the following.

Proposition 2.1. Let N be positive and r be an integer such that (1.7) holds. Then there
exists σ1 > 0 such that

Ur,a(N)� N1−σ1(2.1)

We will first use an idea of Vinogradov in order to calculate the Fourier transformation of
ψ and thus to get some exponential sums which are easier to treat. Therefore we write for
short e(x) := exp(2πix). The following lemma will provide us with the Fourier transformation
of Ur,a.

Lemma 2.1 ([9, Theorem 1.8]). Let g(t) be a real function in [a, b]. Then for δ > 0 the
estimation ∑

a<n≤b
ψ(g(n))� b− a

δ
+
∞∑
ν=1

min

(
δ

ν2
,

1

ν

) ∣∣∣∣∣∣
∑
a<n≤b

e(νg(n))

∣∣∣∣∣∣
holds.

The exponential sums arising in Lemma 2.1 are very similar to those in Nakai and Shio-
kawa [12]. Thus we will use their lemma for estimation.

Lemma 2.2 ([12, Lemma 6]). Let k, P and N be integers such that k ≥ 2, 2 ≤ N ≤ P . Let
g(x) be real and have continuous derivatives up to the (k + 1)th order in [P + 1, P +N ] ; let
0 < λ < 1/(2c0(k + 1)) and

λ ≤ g(k+1)(x)

(k + 1)!
≤ c0λ (P + 1 ≤ x ≤ P +N),

or the same for −g(k+1)(x), and let

N−k−1+δ ≤ λ ≤ N−1

with 0 < δ ≤ k. Then
P+N∑
n=P+1

e(g(n))� N1−η,
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where

η =
δ

16(k + 1)L
, L = 1 +

⌊
1

4
k(k + 1) + kR

⌋
, R = 1 +

⌊
log
(
1
δk(k + 1)2

)
− log

(
1− 1

k

) ⌋
.

If β (the highest exponent) is an integer we need some more delicate tools. In particular,
we need three lemmas. The first two will be useful in the adoption of Lemma 2.5.

Lemma 2.3 ([16, Lemma 6.11]). Let M and N be integers, N > 1, and let φ(n) be a real
function of n, defined for M ≤ n ≤M +N − 1, such that

δ ≤ φ(n+ 1)− φ(n) ≤ cδ (M ≤ n ≤M +N − 2),

where δ > 0, c ≥ 1, cδ ≤ 1
2 . Let W ≥ 1, then the number of values of n for which ‖φ(n)‖ ≤Wδ

is less than
(Ncδ + 1)(2W + 1).

We also state the Vinogradov integral, which will provide us with the desired estimate for
the case of β being an integer. Let d and m be positive integers. We set

S(m) =
m∑
n=1

e(t1n+ t2n
2 + · · ·+ tdn

d),

where t1, . . . , td are reals. Then for an integer L we set

J(m,L) =

∫ 1

0
· · ·
∫ 1

0
|S(m)|2L dt1 · · · dtd.

Now we can state the estimate of the Vinogradov integral.

Lemma 2.4 ([16, Lemma 6.9]). If R is any non-negative integer and L ≥ 1
4d(d + 1) + dR,

then
J(m,L) ≤ KR(logm)Rm2L− 1

2
d(d+1)+ 1

2
d(d+1)(1−(1/d))R ,

where K = 482L(L!)2Ldd
1
2
d(d−1).

The last lemma deals with a variation of Lemma 2.2 for twice differentiable functions.

Lemma 2.5 ([7, Corollary 8.12]). Let f(x) be a real function on [a, b], twice differentiable,
and let f ′′(x) ≥ λ > 0 throughout the interval (a, b). Then∑

a<n≤b
e(f(n))� (f ′(b)− f ′(a) + 1)λ−

1
2 .

What is left is the keystone in the proof of Proposition 2.1. In particular, in the proof we
will have to estimate exponential sums in a uniform way, which is provided by the following
lemma.

Lemma 2.6. Let N be a positive real and p is a pseudo-polynomial as in (1.2) with d ≥ 1.
If γ and r are such that

0 < γ < min

(
β − β1

2
,
1

3

)
and 1 ≤ qr+1 ≤ Nβ−1(2.2)

hold then there exists an η > 0 such that for 1 ≤ ν ≤ Nγ we have

S(N, r, ν) =
∑

N<n≤2N
e

(
νp(n)

qr+1

)
� N1−η.
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Démonstration. In order to properly estimate S(N, r, ν) we divide the proof up into two cases,
according to whether β 6∈ Z or β ∈ Z.

– Case 1 : β is not an integer. We put k := bβc+ 2 and g(x) := νq−(r+1)p(x). The idea
is an application of Lemma 2.2. Therefore we take a closer look at the (k+1)st derivative
of g. Since

g(k+1)(x) ∼ ν

qr+1
α0β(β − 1) · · · (β − k)xβ−k−1,

we can bound it by

λ <
g(k+1)(x)

(k + 1)!
< c0λ (N < x ≤ 2N)

or similarly for −g(k+1)(x), where

λ = c
ν

qr+1
Nβ−k−1

and c depends only on p.
Let δ := logN c, then for N → ∞ we get that δ → 0. We may assume that N is

sufficiently large such that −1 < δ ≤ 2
3 . Thus with help of (2.2) for r we get that

N−k−1 < N δ−k ≤ λ ≤ N δ+γ+β−k−1 < N−1,

Finally an application of Lemma 2.2 yields

S(N, r, ν)� N1−η(2.3)

for η > 0 and we have shown the lemma for the case of β 6∈ Z.
– Case 2 : β is an integer. In order to ease notation we set b := β in this case. Since
p is not a polynomial we get that there exists a βh 6∈ Z. Let βh be the largest non-
integer, thus, in particular b, β1, . . . , βh−1 ∈ Z. Since βh 6∈ Z we obviously have h ≥ 1.
Furthermore since b ∈ Z and b > βh > 1 we have b ≥ 2 throughout this case.

Let ρ be such that γ < ρ < min(βh − 2γ, 1). We divide the range of r up into three
parts. In particular we distinguish between

qr+1 ≤ Nβh−ρ, Nβh−ρ < qr+1 ≤ N b−2+ρ, N b−2+ρ < qr+1 ≤ N b−1.

Since we might have b − βh < 2(1 − ρ) we note that the middle part can be empty. We
will start with the lower and upper part since the treatment of the middle part is the
longest one.
? Case 2.1 : qr+1 ≤ Nβh−ρ. As in the case of β 6∈ Z we want to apply Lemma 2.2.

We set g(x) := νq−(r+1)p(x) and since b, . . . , βh−1 ∈ Z we get

λ <
g(b+1)(x)

(b+ 1)!
< c0λ (N < x ≤ 2N)

or the same for −g(b+1)(x), where

λ = c
ν

qr+1
Nβh−b−1

and c again only depends on p. We again set δ := logN c and as in Case 1 assume
that N is large enough such that −ρ < δ < (b − βh)/2. Since qr+1 ≤ Nβh−ρ and
γ < (b− β1)/2 ≤ (b− βh)/2 we get that

N−b−1 < N δ+ρ−b−1 ≤ λ ≤ N δ+γ+βh−b−1 < N−1.
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Thus an application of Lemma 2.2 yields

S(N, r, ν)� N1−η.(2.4)

? Case 2.2 : N b−2+ρ < qr+1 ≤ N b−1. Since b ≥ 2 we have

g′′(n) > c
ν

qr+1
N b−2 =: λ > 0 (N < n ≤ 2N).

We apply Lemma 2.5 in order to get

S(N, r, ν)�
√

ν

qr+1
N

b
2 � N1− 1

2
(ρ−γ).(2.5)

? Case 2.3 : Nβh−ρ < qr+1 ≤ N b−2+ρ. In this case we follow the proof of Theorem
in [12] (cf. Equation (12) and the following pages), which is an adoption of the proof
of Lemma 6.12 of [16]. We set

m :=

⌊(
qr+1

ν

) 1
b−1

⌋
� N1− 1−ρ

b−1 .(2.6)

Furthermore let

T (n) :=

m∑
k=1

e(p(n+ k)− p(n)).

Then, following Equation (6.12.4) of [16], we get

|S(N, r, ν)| ≤ 1

m
N1−1/(2L)

 ∑
N<n≤2N−m

|T (n)|2L
+m.(2.7)

For 1 ≤ y ≤ m we set

∆(y) :=
ν

qr+1
(p(n+ y)− p(n))−

(
t1y + t2y

2 + · · ·+ tb−1y
b−1 +

ν

qr+1
α0y

b

)
.

Thus

T (n) = S(m)e(∆(m))− 2πi

∫ m

0
S(y)∆′(y)e(∆(y))dy,(2.8)

where

∆′(y) =
b−1∑
h=1

h

(
ν

qr+1

p(h)(n)

h!
− th

)
yh−1 +

ν

qr+1

(
p(b)(n+ θy)− α0b!

)
yb.

with 0 < θ < 1.
For every n and t = (t1, . . . , tb−1) ∈ Rb−1 we define χ(n, t) to be

χ(n, t) :=

{
1 if

∥∥∥p(h)(n)h! − th
∥∥∥ ≤ 1

2mh
(h = 1, 2, . . . , b− 1),

0 else.

Now for fixed n, if we assume that χ(n, t) = 1 for t ∈ Rb−1, then we have by the
definition of m in (2.6) that

∆′(y)� 1

m
+

ν

qr+1
Nβh−bmb−1 � 1

m
+Nβh−b � 1

m
,
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which implies for T (n) that

T (n)� S(m) +
1

m

∫ m

0
|S(y)| dy.

Thus we get for (2.8) that

(2.9)
∑

N<n≤2N−m
|T (n)|2L � m

1
2
b(b−1) sup

t∈Rb−1

∑
N<n≤2N−m

χ(n, t)

×
∫ 1

0
· · ·
∫ 1

0

(
|S(m)|+ 1

m

∫ m

0
|S(y)|dy

)2L

dt1 · · · dtb−1.

An application of Lemma 2.4 yields for the integral∫ 1

0
· · ·
∫ 1

0

(
|S(m)|+ 1

m

∫ m

0
|S(y)|dy

)2L

dt1 · · · dtd

≤ 22L−1
∫ 1

0
· · ·
∫ 1

0

(
|S(m)|2L +

1

m

∫ m

0
|S(y)|2L dy

)
dt1 · · · dtb−1

� m2L− 1
2
b(b−1)+ 1

2
b(b−1)(1−1/b)R(logm)R.

(2.10)

Now we want to estimate the supremum by applying Lemma 2.3 with

φ(n) =
ν

qr+1(b− 1)!
p(b−1)(n)− tb−1.

Then φ(n+1)−φ(n) = ν
qr+1(b−1)!p

(b)(n+θ) ∼ α0b
ν

qr+1 , so that δ ≤ φ(n+1)−φ(n) ≤
cδ ≤ 1

2 , where δ = 1
2α0b

ν
qr+1 and c = 2. If we set W = 1/(2δmb−1), then an

application of Lemma 2.3 gives

sup
t∈Rb−1

∑
N<n≤2N−m

χ(n, t)�
(
N

ν

qr+1
α0b+ 1

)(
1

mb−1
qr+1

α0bν
+ 1

)
� N

ν

qr+1
+ 1.

Plugging this together with (2.10) into (2.9) and then into (2.7) yields

S(N, r, ν)� S1(N, r, ν) +m(2.11)

where

S1(N, r, v) = N1− 1
2L

(
m

1
2
b(b−1)(1−1/(b−1))R

(
ν

qr+1
N + 1

)) 1
2L

with L and R any positive integers.
Now we again split the range up into two parts and consider all r such that

Nβh−ρ < qr+1 ≤ N and N < qr+1 ≤ N b−2+ρ

separately. We note that the lower range might be empty.
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If qr+1 ≤ N , then clearly νq−(r+1)N > 1 and we can estimate S1(N, r, ν) by

S1(N, r, ν)� N1− 1
2L

(
q

1
2
(r+1)b(1−1/(b−1))R ν

qr+1
N

) 1
2L

� Nq−(r+1)(1− 1
2
b(1−1/(b−1))R)/2Lν

1
2L

� N1−(βh−ρ)(1− 1
2
b(1−1/(b−1))R)/2LN

γ
2L

� N1−βh−ρ
4L

+ γ
2L ,

where we have chosen R to be sufficiently large, such that b(1− 1/(b− 1))R < 1.

Secondly we consider the case qr+1 > N . Then we have that νq−(r+1)N � ν and
S1(N, r, ν) can be estimated by

S1(N, r, ν)� N1− 1
2Lm

1
4L
b(b−1)(1−1/(b−1))Rν

1
2L

� N1− 1
2L

+ γ
2L q

r+1
4L

b(1−1/(b−1))R

� N1− 1−γ
2L

+ b
4L

(b−2+ρ)(1−1/(b−1))R

� N1− 1−γ
2L

+ 1
4L

where we have taken R to be sufficiently large, such that b(b−2+ρ)(1−1/(b−1))R <
1.
Combining these estimates in (2.11) and using the estimate for m in (2.6) we reach
at

S(N, r, ν)� N1−βh−ρ−2γ

4L +N1− 1−2γ
4L +N1− 1−ρ

b−1 .(2.12)

Noting that γ < ρ < min(βh − 2γ, 1) together with the restrictions for γ in (2.2), the
estimates (2.4), (2.5) and (2.12) prove the lemma for the case β ∈ Z.

�

Now we have to consider the case that p(t) = α0t
β, i.e. d = 0.

Corollary 2.1. Let N be a positive real and p(t) = α0t
β with 1 < β 6∈ Z. If γ and r are such

that

0 < γ < {β} and 1 ≤ qr+1 ≤ Nβ−1(2.13)

hold then there exists an η > 0 such that for 1 ≤ ν ≤ Nγ we have

S(N, r, ν) =
∑

N<n≤2N
e

(
νp(n)

qr+1

)
� N1−η.

Démonstration. Following the proof of Lemma 2.6 and in particular the case where β 6∈ Z.
Setting k and δ as there we reach at

N δ−k ≤ λ ≤ N δ+γ+β−k−1 < N−1

for sufficiently large N . Thus again an application of Lemma 2.2 proves the corollary. �

Now we combine our tools in order to estimate Ur,a for r such that (1.7) holds.



10 MANFRED G. MADRITSCH

Proof of Proposition 2.1. Let σ > 0, which we will choose later. Then an application of
Lemma 2.1 yields

Ur,a(N) =
∑

N<n≤2N
ψ

(
p(n)

qr+1
− a

q

)
� N1−σ +

Nσ∑
ν=1

1

ν
|S(N, r, ν)|+Nσ

∞∑
ν=Nσ+1

1

ν2
|S(N, r, ν)| .

The next step is an application of Lemma 2.6 or Corollary 2.1 depending on the shape of
p. Therefore we set γ > 0 such that (2.2) or (2.13) hold, respectively, and get by trivially
estimating S(N, r, ν) in the last term, that

Ur,a(N)� N1−σ +N1−(η−σ) +N1−(η−σ)
Nγ∑

ν=Nσ+1

1

ν2
+N1+σ

∞∑
ν=Nγ+1

1

ν2

� N1−σ +N1−η +N1−(γ−σ).

Now the proposition follows by setting σ1 = σ := min (η, γ/2). �

3. Integral transform

The aim of this section is to transform the sum Ur,a into an integral Ir,a(N) which is defined
by

Ir,a(N) :=

∫ q−r−1p(2N)

q−r−1p(N)
ψ

(
t− a

q

)
t
1
β
−1

dt.(3.1)

In particular we will show the following.

Proposition 3.1. Let N be positive and r be such that (1.8) holds. Then there exists an
σ2 > 0 such that

Ur,a(N) =
1

β
α
− 1
β

0 q
r+1
β Ir,a(N) +O

(
N1−σ2) .(3.2)

The main tool will be the following Lemma.

Lemma 3.1 ([9, Theorem 1.5]). Let g in [a, b] (0 ≤ a < b) be a non-negative, strictly decrea-
sing function with a continuous derivative in (a, b). If g−1(t) denotes the inverse function of
g(t), then∑

a<n≤b
ψ(g(n))−

∫ b

a
ψ(t)g′(t)dt− ψ(a)ψ(g(a))

=
∑

g(b)<m≤g(a)

ψ
(
g−1(m)

)
−
∫ g(a)

g(b)

ψ(t)

g′(g−1(t))
dt− ψ(b)ψ(g(b)).

The interesting integral is the last one. For the first integral we will use partial integration
and the sum is treated by the following lemma.

Lemma 3.2 ([9, Theorem 2.3]). Let g(t) be a real function in [a, b], twice continuously diffe-
rentiable. Let g′′(t) be monotonic and be either positive or negative throughout. Then∑

a<n≤b
ψ(g(n))�

∫ b

a

∣∣g′′(t)∣∣ 13 dt+
1√
|g′′(a)|

+
1√
|g′′(b)|

.



THE SUMMATORY FUNCTION OF q-ADDITIVE FUNCTIONS ON PSEUDO-POLYNOMIAL SEQUENCES11

Now we have collected all the tools for the proof of the proposition.

Proof of Proposition 3.1. In order to apply Lemma 3.1 we need that the function under consi-
deration is monotonically decreasing. We guarantee this by rewriting the sum in (3.2) and
applying Lemma 3.1, which yields∑

N<n≤2N
ψ

(
p(n)

qr+1
− a

q

)
=

∑
0<n≤N

ψ

(
p (b2Nc − n)

qr+1
− a

q

)
+O(1)

= −q−r−1
∫ N

0
ψ(t)p′(b2Nc − t)dt

+
∑

q−r−1p(b2Nc−N)−a
q
<m≤q−r−1p(b2Nc)−a

q

ψ

(
b2Nc − p−1

(
qr+1

(
m+

a

q

)))

+ qr+1

∫ q−r−1p(b2Nc)

q−r−1p(b2Nc−N)

ψ
(
t− a

q

)
p′(p−1(qr+1t))

dt+O(1).

(3.3)

We will write � if both � and � hold. Since p is a pseudo-polynomial we can write
p(t) = α0t

β + O(tβ1), where we set β1 = 0 if d = 0 (i.e., p(t) = α0t
β). This yields for the

inverse of p

p−1(t) =

(
t

α0

) 1
β

+O
(
t
β1+1
β
−1
)
.(3.4)

Implicitly calculating the derivatives gives(
p−1
)′

(t) =
1

p′(p−1(t))
=

1

β
α
− 1
β

0 t
1
β
−1

+O
(
t
β1+1
β
−2
)
,

(
p−1
)′′

(t) = − p′′(p−1(t))

(p′(p−1(t)))3
� −β − 1

β2
α
− 1
β

0 t
1
β
−2
.

(3.5)

Now we define ψ1(x) :=
∫ x
0 ψ(t)dt for x ∈ R and consider the three parts of (3.3) separa-

tely. It is clear, that ψ1(x) is continuous, bounded and piecewise continuously differentiable.
Integration by parts for the first integral in (3.3) yields the estimate

(3.6)

∫ N

0
ψ(t)p′(b2Nc − t)dt = ψ1(t)p

′(b2Nc − t)|N0 +

∫ N

0
ψ1(t)p

′′(b2Nc − t)dt� Nβ−1.

In order to estimate the sum we define g(t) := b2Nc − p−1(qr+1(t+ a
q )) for t ≥ 0. For the

range q−r−1p(b2Nc − N) − a
q < t ≤ q−r−1p(b2Nc) − a

q , we have t � q−r−1Nβ and thus by

(3.5) ∣∣g′′(t)∣∣ � q(r+1)/βt1/β−2 � q2(r+1)N1−2β.

Then an application of Lemma 3.2 together with noting the bounds for qr+1 in this range
(1.8) yield for the sum in (3.3) that

(3.7) ∑
q−r−1p(b2Nc−N)−a

q
<m≤q−r−1p(b2Nc)−a

q

ψ(g(m)) � q−(r+1)/3N (β+1)/3 + q−r−1Nβ− 1
2 � N

2
3 .
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Now we aim for the main term which we extract from the second integral of (3.3). Noting
that ψ(t)� 1 we get with (3.5) that

qr+1

∫ q−r−1p(b2Nc)

q−r−1p(b2Nc−N)

ψ
(
t− a

q

)
p′(p−1(qr+1t))

dt

= qr+1

∫ q−r−1p(b2Nc)

q−r−1p(b2Nc−N)
ψ

(
t− a

q

)(
1

β
α
− 1
β

0 (qr+1t)
1
β
−1

+O
(

(qr+1t)
β1+1
β
−2
))

dt

=
1

β
α
− 1
β

0 q
r+1
β

∫ q−r−1p(b2Nc)

q−r−1p(b2Nc−N)
ψ

(
t− a

q

)
t
1
β
−1

dt

+O

(∫ q−r−1p(b2Nc)

q−r−1p(b2Nc−N)
ψ

(
t− a

q

)
q
(r+1)

(
β1+1
β
−1

)
t
β1+1
β
−2

dt

)

=
1

β
α
− 1
β

0 q
r+1
β

(
Ir,a(N) +

{∫ q−r−1p(N)

q−r−1p(b2Nc−N)
+

∫ q−r−1p(b2Nc)

q−r−1p(2N)

}
ψ

(
t− a

q

)
t
1
β
−1

dt

)
+O

(
max(Nβ1+1−β, logN)

)
=

1

β
α
− 1
β

0 q
r+1
β Ir,a(N) +O (1) +O

(
max(Nβ1+1−β, logN)

)

(3.8)

Plugging (3.6), (3.7) and (3.8) into (3.3) proves the proposition with σ2 = min
(
β1 + 1− β, 13

)
.

�

4. Proof of Theorem 1.1

In the sections above we have collected all the tools we need along the road we will follow
in order to proof Theorem 1.1. We split the sum in (1.5) up into dyadic parts∑

n≤x
f(bp(n)c) =

∑
1≤i≤log2 x

S(2−ix) +O(1),(4.1)

where

S(N) :=
∑

N<n≤2N
f(bp(n)c).(4.2)

The proof proceeds in three steps.

(1) In the first one, we use the q-additivity of f in order to count the occurrences of every
digit separately. Therefore we will sum over all positions and exchange the order of
summation. As we will see, the resulting sums will be our well known Ur,a. Thus we
will apply our estimates from Section 2 and 3.

(2) Then we will give the integral resulting from the transformation in Section 3 the shape
of a periodic function such as in the results of Delange [1] and Peter [13].

(3) Finally we will put all together in order to gain the desired result.
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4.1. Rewriting the sum. The idea is to use the q-additivity of f and exchange the sum
over n with the sum over the digits. Therefore we need a function which indicates if the digit
at position r is a or not. The main idea is to extract the main term and write the rest as sum
of ψ functions, i.e.

Ir,a(x) =
1

q
+ ψ

(
x

qr+1
− a+ 1

q

)
− ψ

(
x

qr+1
− a

q

)
=

{
1 if dr(x) = a,

0 else.
(4.3)

We define R(N) to be the length of the expansion of p(N), i.e.

R(N) := logq(p(N)).(4.4)

Since p is a pseudo-polynomial this will provide us with upper bounds for the maximum
length of an expansion. Using the representations (4.3) and (1.6) together with (4.4) in (4.2)
we get

S(N) =
∑

N<n≤2N

∑
0≤r≤R(2N)

q−1∑
a=0

f(a)Ir,a(p(n))

= µfN (bR(2N)c+ 1) +

q−1∑
a=0

f(a)
∑

0≤r≤R(2N)

Ur,a+1(N)− Ur,a(N)

+O(1).

(4.5)

The terms Ur,a occurring in (4.5) are treated in Section 2 and Section 3. Thus applying
Proposition 2.1 and 3.1 and setting σ = min(σ1, σ2) we gain

S(N) = µfN (bR(2N)c+ 1) +O
(
N1−σ)

+
1

β
α
− 1
β

0

q−1∑
a=0

f(a)
∑

0≤r≤R(2N)

q(r+1)/β (Ir,a+1(N)− Ir,a(N))

− 1

β
α
− 1
β

0

q−1∑
a=0

f(a)
∑

qr+1≤Nβ−1

q(r+1)/β (Ir,a+1(N)− Ir,a(N)) .

(4.6)

4.2. Extraction of the periodic function. The goal of this intermediate section is the
transformation of the integral Ir,a to give the result the shape as in the results of Delange [1]
and Peter [13].

Since we will often use the functions Jf,β and Ff,β defined in (1.4), we will write J := Jf,β
and F := Ff,β for short. Then noting the definition of J together with partial integration as
used in (3.6) we get

J(x) =

q−1∑
a=0

f(a)

∫ x

0

(
ψ

(
t− a+ 1

q

)
− ψ

(
t− a

q

))
t
1
β
−1

dt� 1 (x ≥ 0).(4.7)
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Now we concentrate on the first sum over the r of the Ir,a in (4.6). By noting the definition
of J in (1.4) we get that

1

β
α
− 1
β

0

∑
r≤R(2N)

q(r+1)/β
q−1∑
a=0

f(a) (Ir,a+1(N)− Ir,a(N))

=
1

β
α
− 1
β

0

 ∑
r≤R(2N)

q(r+1)/βJ(q−r−1p(2N))−
∑

r≤R(2N)

q(r+1)/βJ(q−r−1p(N))


=: S1(N)− S2(N), N ≥ 1.

(4.8)

Since p(t) = α0t
β +O(tβ1), where we may set β1 = 0 if p(t) = α0t

β, and J(x)� 1 by (4.7)
we get on the one hand

S1(N) =
1

β
α
− 1
β

0

∑
r≤R(2N)

q(R(2N)−r+1)/βJ(qr−R(2N)−1p(2N))

=
1

β
α
− 1
β

0 p(2N)
1
β q(1−{R(2N)})/β

∑
r≤R(2N)

q
− r
β J(q{R(2N)}+r−1)

=
1

β
2Nq(1−{R(2N)})/β

∑
r≤R(2N)

q
− r
β J(q{R(2N)}+r−1) +O

N ∑
r≤R(2N)

q
− r
β


=

1

β
2Nq(1−{R(2N)})/β

∑
r≥0

q
− r
β J(q{R(2N)}+r−1) +O

 ∑
r>R(2N)

q
− r
β

+O(1)

= 2NF (R(2N))− µf2N(1− {R(2N)}) +O(1).

(4.9)

On the other hand for S2(N) we get

S2(N) = S1

(
N

2

)
+

1

β
α
− 1
β

0

∑
R(N)<r≤R(2N)

q
r+1
β J(q−r−1p(N)).(4.10)

For the second sum we have that R(N) < r ≤ R(2N), which implies q−r−1p(N) < 1
q . Thus

connecting the representations in (4.3) and (1.4) we gain for 0 ≤ x < 1
q

J(x) =

∫ x

0

q−1∑
a=0

f(a)

(
Ir,a(t)−

1

q

)
t
1
β
−1

dt = −µfβx
1
β .(4.11)

Now plugging (4.9) and (4.11) into (4.10) yields

S2(N) = NF (R(N))− µfN(1− {R(N)})− µfN(bR(2N)c − bR(N)c) +O(1).(4.12)

Finally we consider the second sum over Ir,a in (4.6). We recall the definition of Ir,a(N) in
(3.1). Then integration by parts yields for non-negative integers a and r and N ≥ 1, that

Ir,a(N)� q

(
1− 1

β

)
(r+1)

N1−β.
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Thus we get

1

β
α
− 1
β

0

q−1∑
a=0

f(a)
∑

qr+1≤Nβ−1

q(r+1)/β (Ir,a+1(N)− Ir,a(N))� 1.(4.13)

4.3. Putting all together. Plugging (4.9), (4.12) and (4.13) into (4.6) yields

S(N) = µf2N R(2N)− µfN R(N) + 2NF (R(2N))−NF (R(N)) +O
(
N1−σ) .(4.14)

Plugging this into (4.1) and summing up over N = 2−ix for 1 ≤ i ≤ log2 x yields∑
n≤x

f(bp(n)c) =
∑

1≤i≤log2 x
S(2−ix) +O(1)

= µfx logq(p(x)) + Ff,β
(
logq(p(x))

)
+O

(
x1−ε

)
for an ε > 0, which proves the theorem.
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