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Abstract. We consider a generalization of normal numbers to matrix number systems. In
particular we show that the analogue of the Theorem of Copeland and Erdős also holds in this
setting. As a consequence this generalization holds true also for canonical number systems.

1. Introduction

Among the properties of number systems mainly investigated are finiteness, periodicity and
randomness. In this paper we mainly concentrate in the third property. When dealing with an
infinite expansion one is interested whether a certain block of digits will occur asymptotically
equally often. If this is true for every possible block then this number is called normal to that
number system.

The first two questions coming up are how many normal numbers are there and how to construct
such a normal number. For the first it is known that allmost every real number is normal to a
given base q ≥ 2. The second one was first answered by Champernowne [1] who was able to show
that the concatenation of the integers, i.e.,

0.1 2 3 4 5 6 7 8 9 10 11 12 . . .

is normal in the decimal system (q = 10). He conjectures that the same holds true for the
concatenation of the primes. Copeland and Erdős [2] even proved more that this. They were able
to show that one can construct a normal number with any increasing sequence which satisfies a
certain restraint in connection with its growth rate (see Lemma 5.1). Ways to construct numbers as
concatenation of the integer part of polynomials were considered by several authors in [2, 3, 14, 15].
Finally a construction by the integer part of entire functions of bounded logarithmic growth is
given by Madritsch, et.al. in [12].

In this paper we want to generalize the result of Copeland and Erdős to matrix number sys-
tems (MNS). These number systems are strictly connected with canonical number systems (CNS).
Knuth [9] was one of the first who considered CNS for the Gaussian integers when he was in-
vestigating the properties of the “twin-dragon” fractal. These considerations were extended to
quadratic number fields by Kátai, Kovács, and Szabó [6, 7, 8]. The extension to the integral
domains of algebraic number fields was shown by Kovács and Pethő in [11]. The connection of
MNS and CNS is based on the following observation by Kovács [10]: if β is a base of a CNS in a
number field then {1, β, . . . , βn−1} forms an integral basis for this number field. Furthermore the
connection of MNS to lattice tailings was worked out for instance by Gröchenig and Haas in [4].

2. Definitions of number systems and normality

As these definitions are standard in this area, we mainly follow [13].
Let B ∈ Zn×n be an expanding matrix (i.e., its eigenvalues have all modulus greater than 1).

Let D ⊂ Zn be a complete set of residues (mod B) with 0 ∈ D. We call the pair (B,D) a (matrix )
number system if every m ∈ Zn admits a representation of the form

m =
k∑

j=0

Bjaj , (aj ∈ D).
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We set `(m) := l + 1 for the length of m. As D is a complete set of residues modulo B this
representation is unique and we furthermore get that |D| = [Zn : BZn] = |det B| > 1.

By

F :=

∑
j≥1

B−jaj : aj ∈ D


we denote the fundamental domain of (B,D). Furthermore for every a ∈ Zn we denote by

Fa := B−`(a)(F + a)

the elements of F whose (B,D) expansion starts with the same digits as a. For α ∈ Rn with
α =

∑k
j=−∞Bjaj we denote by

bαc :=
k∑

j=0

Bjaj , {α} :=
∑
j≥1

B−jaj ,

the integral and the fractional part of α, respectively.
For our generalization it is not necessary that (B,D) is a number system. We are interested in a

wider class of pairs (B,D), which Indlekofer,et.al. [5] call just touching covering systems (JTCS).
A pair (B,D) is a JTCS if

λ((m1 + F) ∩ (m2 + F)) = 0, (m1 6= m2, m1,m2 ∈ Zn)

where λ denotes the n-dimensional Lebesgue measure.
Now we are ready to define normal numbers in (B,D). Let θ ∈ F . Then we denote byN (θ; a,N)

the number of blocks in the first N digits of θ which are equal to the expansion of a. Thus

N (θ; a,N) := |{0 ≤ n < N : {Bnθ} ∈ Fa}| .
We call θ ∈ F normal in (B,D) if for every k ≥ 1

sup
`(a)=k

∣∣∣∣∣N (θ; a,N)− N

|D|k

∣∣∣∣∣ = o(N),(2.1)

where the suppremum is taken over all a ∈ Zn whose (B,D) expansion has length k.
As the representation of one element is not necessarily unique in a JTCS, we have to define

and to consider ambiguous expansions. Later we will show that an element with an ambiguous
expansion cannot be normal.

3. Numbering the elements of a JTCS

To show the structure of elements of (B,D) we mainly follow [13]. First we define a map

Φ : Zn → Zn

x 7→ B−1(x− a)

where a is the representative of the congruence class of x (i.e., x− a ∈ BZn).
We define P :=

{
m ∈ Zn : ∃k ∈ N : Φk(m) = m

}
to be the set of periodic elements, which is

finite (cf. [13]). Now we construct a unique representation of every m ∈ Zn. Therefore let
r = r(m) ≥ 0 be the least integer such that Φr(m) = p ∈ P. Then every m ∈ Zn has a unique
representation as follows:

m =
r−1∑
j=0

Bjaj + Brp (aj ∈ D, p ∈ P)

with Φr−1(m) = ar−1 + Bp /∈ P if r ≥ 1.
We denote by

R :=


k∑

j=0

Bjaj : k ≥ 0, aj ∈ D


the set of all properly representable elements of Zn.
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We want to define an ordering on this set. Therefore let q := |det B| and let τ be a bijection from
D to {0, . . . , q−1} such that τ(0) = 0. Then we extend τ onR by setting τ(akBk+· · ·+a1B+a0) :=
τ(ak)qk + · · ·+ τ(a1)q + τ(a0). We also pull back the relation ≤ from N to R by setting

a ≤ b :⇔ τ(a) ≤ τ(b), (a, b ∈ R).(3.1)

Then we define a sequence {zi}i≥0 of elements in R with zi := τ−1(i). This sequence is
increasing, i.e., i ≤ j ⇒ `(zi) ≤ `(zj) for i, j ∈ N.

Now we can state our main results.

Theorem 3.1. Let (B,D) be a JTCS and let {ai}i≥0 be an increasing subsequence of {zi}i≥0. If
for every ε > 0 the number of ai with ai ≤ zN exceeds Nε for N sufficiently large, then

θ = 0.[a0][a1][a2][a3][a4][a5][a6][a7] · · ·
is normal in (B,D) where [·] denotes the expansion in (B,D).

Before we state the proof of the theorem we have to exclude the case that θ is ambiguous (i.e.,
has two different representations). In the next section we will show that any θ ∈ F with two
different representations cannot be normal.

4. Ambiguous expansions in JTCS

We call a θ ∈ F ambiguous (with ambiguous expansion) if there exists a l ≥ 0 such that

{Blθ} ∈ ∂F .(4.1)

In the following lines we will justify our definition. If a θ ∈ F has two different expansions this
means that there exist l ≥ 1 and ai, bi ∈ D for i = 1, 2, . . . with

θ =
∞∑

i=1

B−iai =
∞∑

i=1

B−ibi and al 6= bl.

This equals saying that there exist an m ∈ Zn and a l ≥ 0 such that

{Blθ} ∈ F ∩ (m + F).

We set

S := {m ∈ Zn \ {0} : F ∩ (m + F) 6= ∅}, S0 := S ∪ {0}, Bm := F ∩ (m + F).

By Lemma 3.1 of [13] we see that
∂F =

⋃
m∈S

Bm.

Thus all θ ∈ F which satisfies (4.1) have at least two different expansions.
Since l is finite and we are interested in the asymptotical distribution of blocks in the digital

expansion and since BlF ∩ F = F we may assume without loss of generality that l = 0.
The goal of this section is to show the following Proposition.

Proposition 4.1. If θ ∈ F is ambiguous, then θ is not normal.

We follow [13] to construct the graph G(Zn), which provides a tool for constructing the repre-
sentation of an element of S0. For this graph Zn is its set of vertices and B := D − D its set of
labels. The rule for drawing an edge is the following

m1
b−→ m2 :⇐⇒ Bm1 −m2 = b ∈ B (m1,m2 ∈ Zn).

By G(S) and G(S0) we define the restrictions of G(Zn) to the sets S and S0, respectively.
By Remark 3.4 of [13] we get that any infinite walk m

b1−→ m2
b2−→ m3

b3−→ · · · in G(S0) yields
a representation

m =
∑
j≥1

B−jbj .

Vice versa by looking at such a representation of m we get an infinite walk in G(S0), starting at
m.
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Now we construct the graph G(S0) to determine all points of Bm. Therefore we define for every
pair (m1,m2)

C(m1,m2) := {a ∈ D : (Bm1 +D) ∩ (m2 + a) 6= ∅} and cm1,m2 := |C(m1,m2)| .

Now the graph G(S0) results from G(S0) by replacing every edge m1
b−→ m2 by cm1,m2 edges

m1
a−→ m2 with a ∈ C(m1,m2). By the considerations in Remark 3.4 of [13] we furthermore get

that every infinite walk m
a1−→ m2

a2−→ m3
a3−→ · · · in G(S0) yields a point

θ =
∑
j≥1

B−jaj ∈ Bm ⊂ ∂F .

We denote by C := (ck,l)k,l∈S the accompanying matrix of G(S) and call it the contact matrix
(cf., (6) of [4]). Similarly we call G(S) the contact graph of (B,D).

Thus every ambiguous point θ ∈ F can be constructed by an infinite walk in G(S0). If we can
show that there exists a sufficiently long walk which could not be constructed by G(S0), then we
get that the corresponding block does not appear in any ambiguous point and hence the ambiguous
points cannot be normal.

Therefore we denote by Wk(m) the number of all different walks of length k starting at m in
G(S0). Further let Wk be the total number of walks of length k in G(S0). Then we simply get

|Wk| =
∑
m∈S

|Wk(m)| .

By the definition of the contact matrix C and noting that (|W0(m)|)m∈S = (1, . . . , 1)t we get
the recurrence

(|Wk+1(m)|)m∈S = C · (|Wk(m)|)m∈S .

Let µmax be the eigenvalue of largest modulus of C. Then there exists a constant c > 0 such that

|Wk| =
∑
m∈S

|Wk(m)| = cµk
max(1 + o(1)).(4.2)

Thus we are left with an estimation of µmax. Therefore we justify our naming of C and use the
following result.

Lemma 4.2 ([4, Theorem 2.1]). If (B,D) is a JTCS, then

|µmax| < |det B| .

Now the proof of Proposition 4.1 follows easily.

Proof of Proposition 4.1. In order to show that an ambiguous number θ is not normal we need to
show that there exists a block of length k that cannot occur in the (B,D)-expansion of θ.

By the considerations above this is equivalent to showing that there exists a block of length k
that cannot occur as a walk of length k in G(S).

Since the number of possible blocks of length k is |D|k and the number of walks of length k is
|Wk| it suffices to show

|Wk| ≤ |D|k − 1.

Thus putting (4.2) and Lemma 4.2 together we get that there exists a k0 > 0 such that

|Wk| = cµk
max(1 + o(1)) ≤ |det B|k − 1 = |D|k − 1 (k ≥ k0).

�
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5. Proof of the Theorem

The proof works in three steps.
(1) We start by using the ordering function τ to transfer the number to a number in q-ary

expansion for q := |det B|.
(2) Then we apply the Theorem of Copeland and Erdős to show the normality of this transfered

number.
(3) Finally transferring the number back to a JTCS we show that this does not affect normality.

First we transpose the problem in the setting of q-ary expansions where q := |det B| > 1.
Therefore we use our numbering function τ to transfer θ into a q-ary expansion. Thus

τ(θ) := 0.[τ(a0)][τ(a1)][τ(a2)][τ(a3)][τ(a4)][τ(a5)][τ(a6)][τ(a7)] · · · ,

where [·] denotes the q-ary expansion. As it will always be clear we use [·] for the (B,D)- and the
q-ary expansion simultaneously.

By the assumptions of the theorem we get that {τ(ai)}i≥0 is an increasing sequence and we
can apply the Theorem of Copeland and Erdős.

Lemma 5.1 ([2, Theorem]). If a1, a2, . . . is an increasing sequence of integers such that for every
ε < 1 the number of a’s up to N exceeds Nε provided N is sufficiently large, then the infinite
decimal

0.a1a2a3a4a5a6 . . .

is normal with respect to the base q in which these integers are expressed.

Applying Lemma 5.1 gives that τ(θ) is normal. Thus for k ≥ 1, M ≥ k and (d1, . . . , dk) ∈
{0, 1, . . . , q − 1}k∣∣∣∣∣

{
k ≤ n ≤ M + k

∣∣∣∣∃ a ∈ Z : bqnτ(θ)c = aqk +
k−1∑
i=0

diq
i

}∣∣∣∣∣ =
M

qk
+ o(M).(5.1)

For an x ∈ Z with

x =
k∑

i=0

aiq
i,

where 0 ≤ ai < q for every i, we define `(x) := k + 1 to be the q-ary length of x. Then it is clear
that `(a) = `(τ(a)) for all a ∈ R.

For k ≥ 1 and a ∈ R with `(a) = k we get together with (5.1) that

N (θ; a,N) = |{0 ≤ n < N |{Bnθ} ∈ Fa}|

=
∣∣∣∣{k ≤ n ≤ N + k

∣∣∣∣∃ a ∈ Z : bqnτ(θ)c = aqk + τ(a)
}∣∣∣∣

=
N

qk
+ o(N) =

N

|D|k
+ o(N).

By noting the definition of normality in (2.1) the theorem is proven.
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[11] B. Kovács and A. Pethő, Number systems in integral domains, especially in orders of algebraic number fields,
Acta Sci. Math. (Szeged) 55 (1991), no. 3-4, 287–299.

[12] M. G. Madritsch, J. M. Thuswaldner, and R. F. Tichy, Normality of numbers generated by the values of entire
functions, J. Number Theory, to appear.

[13] W. Müller, J. M. Thuswaldner, and R. F. Tichy, Fractal properties of number systems, Period. Math. Hungar.
42 (2001), no. 1-2, 51–68.

[14] Y.-N. Nakai and I. Shiokawa, Discrepancy estimates for a class of normal numbers, Acta Arith. 62 (1992),
no. 3, 271–284.

[15] , Normality of numbers generated by the values of polynomials at primes, Acta Arith. 81 (1997), no. 4,
345–356.

Manfred G. Madritsch, Department of Mathematics A, Graz University of Technology, Steyr-
ergasse 30/IV, A-8010 Graz, Austria

E-mail address: madritsch@tugraz.at


