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Abstract. In the present paper we investigate the sum of digits function for canonical number

systems. We are interested in its re-partition in arithmetic progressions and similar results

for sum sets. The original problem goes back to Gelfond, who proved the independence of
the distribution of the digits and their sum of digits. The present paper extends results by

Thuswaldner and Mauduit and Sárközy to this kind of numeration systems.

1. Introduction

Let q ≥ 2 be a positive integer, then we define the sum-of-digits function sq, which as its name
indicates takes the digits of an expansion and sums them up, i.e.,

sq(z) =
∑̀
h=0

ah for z =
∑̀
h=0

ahq
h.

This function has been studied from different aspects. In the present paper we are interested
in its re-partition in arithmetic progressions. One of the first results in this direction is due to
Gelfond [4], who could prove that the set

Sh,m(N) := {z ≤ N : sq(z) ≡ h mod m}

is equidistributed in residue classes mods. A similar question for sum sets has been investigated
by Mauduit and Sárközy [13]. In particular, they proved that for A,B ⊂ {1, . . . , N} two sets and
N ∈ N, the estimate∣∣∣∣# {(a, b) ∈ A× B : a+ b ∈ Sh,m(2N)} − |A| |B|

m

∣∣∣∣� Nθ(|A| |B|) 1
2

holds, where θ < 1 and the implied constant is absolute.
Both results have been generalized to number systems in number fields. To this end let K be a

number field and ZK be its ring of integers. Let b ∈ ZK and N := {0, 1, . . . , |N(b)| − 1}. Then the
pair (b,N ) is called a canonical number system in ZK if each z ∈ ZK admits a finite and unique
representation of the form

z =
∑̀
h=0

ahb
h

with ah ∈ N for 0 ≤ h ≤ ` and a` 6= 0 if ` 6= 0. Furthermore we call b the base and N the set of
digits.

A characterization for all possible bases together with an algorithm for determining bases was
given by Kovács and Pethő [10]. Unfortunately this characterization depends on the structure of
the ring of integers of the field. This algorithm was improved and simplified by Akyama nad Pethő
in [3]. Explicit characterizations for some classes of number fields are give in a series of papers by
Kátai, Kovács and Szabó [7–9] .

Date: July 6, 2012.

2010 Mathematics Subject Classification. 11R45 (11A63).
Key words and phrases. sum of digits, canonical number system, exponential sum.
Supported by the Austrian Research Foundation (FWF), Project S9603, that is part of the Austrian Research

Network “Analytic Combinatorics and Probabilistic Number Theory”.

1
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Similarly to the definition above, we define the sum-of-digits function sb in these number systems
by

sb(z) =
∑̀
h=0

ah for z =
∑̀
h=0

ahb
h.

In order to state the generalization of the two results from above we need a second ingredient
– the estimation of the length of expansion. To this end we note that for the positive integers, we
have that the length of expansion of z growths with the logarithm of z. Now let K be a number
field of degree n. Since the digits are integers, we get an expansion for z and all its conjugates
simultaneously, i.e.

z(i) =
∑̀
h=0

ah(b(i))h.

Thus we also have to simultaneously bound the length of expansion in this case. This is established
by the following

Lemma 1.1 ( [11, Theorem]). Let `(z) be the length of the expansion of z to the base b. Then∣∣∣∣∣`(z)− max
1≤i≤n

log
∣∣z(i)

∣∣
log
∣∣b(i)∣∣

∣∣∣∣∣ ≤ C.
Now we define the Minkowski-embedding φ(z) by

φ(z) := (z(1), . . . , z(s),<z(s+1),=z(s+1), . . . ,<z(s+t),=z(s+t)),

where z(1), . . . , z(s) are the real and z(s+1), . . . , z(s+t) are the complex conjugates of z ∈ K. We
define the set C(N) ⊂ Rn as generalization of the area of summation from above. In particular,
let C(N) consist of all vectors

(x1, . . . , xs, xs+1, ys+1, . . . , xs+t, ys+t) ∈ Rn,

whose coordinates satisfy

|xj | ≤ `j(N) (1 ≤ j ≤ s),
x2
s+j + y2

s+j ≤ `s+j(N) (1 ≤ j ≤ t),

with

Nβ1 < `j(N) < Nβ2 , (1 ≤ j ≤ s+ t)

for some 0 < β1 ≤ β2. With help of this set we define

M(N) = {z ∈ ZK : φ(z) ∈ C(N)}.

Now by writing

Ur,m(M(N)) = {z ∈M(N) : sb(z) ≡ r mod m}
we can state Thuswaldner’s result describing the distribution of the sum-of-digits function in
residue classes.

Theorem ( [16, Theorem 3.1]). Let K be a number field with ring of integers ZK . Let b be the
base of a canonical number system in ZK and write pb(x) = a0 + · · · + an−1x

n−1 + xn for the
minimal polynomial of b. For an ideal s of ZK denote by Vb(M(N)) the number of elements of
Ur,m(M(N)) that fulfill

z ≡ a mod s.

Then, if (pb(1),m) = 1,

Vb(M(N)) =
|M(N)|
mN(s)

+O
(
|M(N)|λ

)
(λ < 1),

where λ does not depend on N , r, a and s.

Furthermore he also extended the result by Mauduit and Sárközy to number fields.
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Theorem ( [16, Theorem 4.1]). Let K be a number field of degree n with ring of integers ZK . Let
b be the base of a canonical number system in ZK and pb(x) be the minimal polynomial of b. If
(pb(1),m) = 1, then∣∣∣∣# {(a, b) ∈ A× B : a+ b ∈ Uh,m(2M(N))} − |A| |B|

m

∣∣∣∣�M(N)θ(|A| |B|) 1
2

holds for any two sets A,B ⊂M(N). The implied constant is absolute and θ < 1.

2. Definitions and Results

The objective of this paper are generalisations of Thuswaldner’s results to number systems in
quotient rings of the ring of polynomials over the integers. To formulate our results we have to
introduce the relevant notions. The following definition describes number systems in this ring.

Definition 2.1. Let p ∈ Z[X] be monic of degree n and let N be a subset of Z. The pair
(p,N ) is called a number system if for every z ∈ Z[X] \ {0} there exist unique ` ∈ N and
ah ∈ N , h = 0, . . . , `; a` 6= 0 such that

z ≡
∑̀
h=0

ah(z)Xh (mod p).(2.1)

In this case ah are called the digits and ` = `(a) is called the length of the representation.

This concept was introduced in [14] and was studied among others in [1,2,10,11]. It was proved
in [2], that N must be a complete residue system modulo p(0) including 0 and the zeroes of p are
lying outside or on the unit circle. However, following the argument of the proof of Theorem 6.1
of [14], which dealt with the case p square free, one can prove that non of the zeroes of p are lying
on the unit circle.

If p is irreducible then we may replace X by one of the roots β of p. Then we are in the case of
Z[X]/(p) ∼= Z[β] being an integral domain in an algebraic number field (cf. Section 1). Then we
may also denote the number system by the pair (β,N ) instead of (p,N ). For example, let q ≥ 2
be a positive integer, then (p,N ) with p = X − q gives a number system in Z, which corresponds
to the number systems (q,N ). Furthermore for n a positive integer and p = X2 + 2nX + (n2 + 1)
we get number systems in Z[i].

Now we want to return to these more general number systems and consider the sum-of-digits
function sp in (p,N ). We define

sp(z) ≡
∑̀
h=0

ah for z ≡
∑̀
h=0

ah(z)Xh (mod p).

As above we need an estimation for the length of expansion in order to find good bounds for
the area of summations. Therefore we will define an embedding of the ring Z[X]/(p) in Rn. To
this end we fix a number system (p,N ) and factor p by

p :=

t∏
i=1

pmii

with pi ∈ Z[X] irreducible and deg pi = ni. Then we define by

R := Z[X]/(p) =

t⊕
i=1

Ri with Ri = Z[X]/ (pmii )

for i = 1, . . . , t the Z-module under consideration and in the same manner by

K := Q[X]/(p) =

t⊕
i=1

Ki with Ki = Q[X]/ (pmii )

for i = 1, . . . , t the corresponding vector space. Finally we denote by K the completion of K
according to the usual Euclidean distance.
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In order to properly state our result we need a bounded area whose measure increases with
T tending to infinity. We start with the projections to the parts Ri. Let πi : R → Ri be the
canonical projections. Noting that

Ri = Z[X]/(pmii ) ∼= (Z[X]/(pi))
mi

we define πij to be the canonical projections for i = 1, . . . , t and j = 1, . . . ,mi. We have for every
zi ∈ Ri the unique representation

zi =

mi∑
j=1

aijp
j−1
i =

mi∑
j=1

ni∑
k=1

aijkX
k−1pj−1

i

with aij ∈ Z[X] and aijk ∈ Z, respectively. We clearly have

πij(z) =

ni∑
k=1

ai1kX
k−1 for j = 1, . . . ,mi.

Since we will often consider a fixed z ∈ R or a fixed ideal q of R we shorten notation by setting
zi := πi(z), zij := πij(z), qi := πi(q) and qij := πij(q) for the corresponding projections, respec-
tively. Finally we note that π := (π1, . . . , πt) = (π11, . . . , πtmt) is an isomorphism by the Chinese
Remainder Theorem.

Now we want to use these projections in order to bound the area under considerations. To this
end we denote by βik the roots of pi for i = 1, . . . , t and k = 1, . . . , ni. We may assume that these
roots are ordered such that for (si, ti) being the index of pi (i.e., si being the number of real roots
and ti being the number of pairs of complex roots, respectively) we have that βi1, . . . , βisi are the
real roots and (βi,si+1, βi,si+ti+1), . . . , (βi,si+ti , βi,si+2ti) are the pairs of complex roots of pi.

In the same manner as in the paragraph above we split vectors in Rn up into its components
according to the parts Ri and Rij . In particular, for fixed x ∈ Rn we write

x = (x1, . . . ,xt) = (x11, . . . ,xtmt) = (x111, . . . , xtmtnt),

where xi ∈ Rmini , xij ∈ Rni and x ∈ R, respectively.

In the next step we embed K in Rn. In view of the structure of R it is more convenient to start
at the bottom level with Rij and define by φij its embedding as

φij :

{
πij(K) → Rni ,
zij 7→ (zij(βi1), . . . , zij(βini)).

Now we go one step back and define for zi ∈ Ri the embedding φi by

φi :

{
πi(K) → Rmini ,
zi 7→ (zi1(βi1), . . . , zi1(βini), zi2(βi1), . . . , zimi(βini))

Finally we define the embedding φ by

φ :

{
K → Rn,
z 7→ (z11(β11), . . . , z1mi(β1n1

), z21(β21), . . . , zt,mt(βt,nt)).

We note that

φ(z) = (φ1 ◦ π1(z), . . . , φt ◦ πt(z)) = (φ11 ◦ π11(z), . . . , φt,mt ◦ πt,mt(z)).

Remark 2.1. This embedding is motivated by the one used by Thuswaldner in [16]. We want to
note that we could have use an other one as for example the following (as was used in [12])

ψ :

{
K → Rn,

a1 + a2X + · · ·+ anX
n−1 7→ (a1, . . . , an).

However, there exists an invertible matrix M such that

M−1φ(z)M = ψ(z)

and therefore these embeddings are equivalent.
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We want to use lattice theory in Rn therefore we define the bounded area S(T ) ⊂ Rn and use
our projections and embeddings to gain the “bounded area” in R. Again because of the structure
of R it is more convenient to start at the bottom level with the set Sij(T ) bounding the area for
Rij . Thus for i = 1, . . . , t and j = 1, . . . ,mi let Sij(T ) be the set of points x ∈ Rni such that

|xk| ≤ lijk(T ),

x2
k + x2

k+1 ≤ lijk(T )2.

with

T β1 < lijk < T β2 (1 ≤ k ≤ ni).(2.2)

Then S(T ) is defined by

S(T ) := {x ∈ Rn : xij ∈ Sij(T ) for i = 1, . . . , t, j = 1, . . . ,mi} .

Finally we define the set R(T ) ⊂ R as those elements whose embedding lies in S(T ), i.e.

R(T ) := {g ∈ R : φ(g) ∈ S(T )} .(2.3)

Since we concentrate on the set of elements whose sum of digits is in a certain residue class, we
write for short

Uh,m(R(T )) := {z ∈ R(T ) : sp(z) ≡ h mod m} .
Now we are able to state our main result.

Theorem 2.2. Let (p,N ) be a number system. For an ideal s of R denote by Vp(R(T )) the
number of elements of Uh,m(R(T )) that fulfill

z ≡ a mod s.

Then, if (p(1),m) = 1,

Vp(R(T )) =
|Uh,m(R(T ))|

mN(s)
+O

(
|Uh,m(R(T ))|λ

)
, (λ < 1),

where λ does not depend on T , h, a, and s.

Note that Vp depends on s but not on the choice of the residue class a mod s.

Theorem 2.3. Let (p,N ) be a number system. If (p(1),m) = 1, then for any two subsets A,B ⊂
R(T ) we have that∣∣∣∣|{(x, y) ∈ A× B : x+ y ∈ Uh,m(R(T ))}| − |A| |B|

m

∣∣∣∣� |R(T )|µ (|A| |B|)
1
2

where the implied constant is absolute and µ < 1.

3. Preliminaries

In this section we will use our choice of the embedding and connect the number system (p,N )
with a matrix number system. This method is standard in that area and we mainly follow
Thuswaldner [16] and Madritsch and Pethő [12].

We note that if (p,N ) is a number system then X is an integral power base of K, i.e.,
{1, X, . . . ,Xn−1} is an R-basis for K. Then we get that

φij(X · zij) = Bijφij(zij) with Bij =

 βi1 · · · · · ·

· · ·
. . . · · ·

· · · · · · βi,ni

 .(3.1)

Now we extend this definition and get

φi(X · zi) = Biφi(zi) with Bi =

 Bi1 · · · · · ·

· · ·
. . . · · ·

· · · · · · Bi,mi
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and

φ(X · z) = Bφ(z) with B =

 B1 · · · · · ·

· · ·
. . . · · ·

· · · · · · Bt

 .

We note that B is a block diagonal matrix, which is the motivation of splitting the ring R into
the subrings Rij .

Since X is invertible we get that B is invertible and extend the definition of φ by setting for an
integer h

φ(Xh · z) := Bhφ(z).(3.2)

After we have defined the embedding φ and the action of X in Rn we take a closer look at the
canonical number system (p,N ). To this end we define the fundamental domain by

F :=

z ∈ K
∣∣∣∣∣∣z =

∑
h≥1

ahX
−h, ah ∈ N

 .

Similarly we define by G := φ(F) the embedding of the fundamental domain in Rn.
Following Gröchenig and Haas [5] we get that (B,φ(N )) is a matrix number system and,

moreover, a so called just touching covering system.

Proposition 3.1 (cf. [5]). Let (p,N ) be a number system and let λ denote the n-dimensional
Lebesgue measure. Then we have

(1) G is compact.
(2)

⋃
g∈Zn(G + g) = Rn.

(3) λ((G + g1) ∩ (G + g2)) = 0 for every g1, g2 ∈ Zn with g1 6= g2.
(4) λ(G) > 0.

The following proposition relates the cardinality of R(T ) with the Lebesgue measure of S(T ).
Moreover we get estimates for the boarder of S(T ) which are of interest for the estimation of the
exponential sums in the following section.

Proposition 3.2. Let β1 and β2 be as in (2.2) and set α = β1/nβ2. Furthermore let Vol(Λ) be
the volume of the fundamental domain of the lattice Λ. Then the following assertions hold

(1) |R(T )| = 1
Vol(Λ)λ(S(T )) +O

(
λ(S(T ))1−α).

(2) λ(∂S(T ))� |R(T )|1−α.

(3) |2R(T )| = 2n |R(T )|+O |R(T )|1−α.

Proof. As we remarked above our choice of the embedding φ was motivated by the embedding
used in the paper of Thuswaldner [16]. Since the matrix B is a block diagonal matrix we may
apply Proposition 2.2 of [16] for each Bi in order to gain the result. �

4. Exponential sums

The main idea is to relax the restriction to residue classes by the usage of exponential sums. In
this section we want to estimate all the exponential sums occurring in the proofs of Theorem 2.2
and Theorem 2.3. But before we start, we need some tools originating from linear algebra. Since
R is obviously a free Z-module of rank n, let λ : R → R be a linear mapping and {z1, . . . , zn} be
any basis of R. Then

λ(zj) =

n∑
i=1

aijzi (j = 1, . . . , n)

with aij ∈ Z. The matrix M(λ) = (aij) is called the matrix of λ with respect to the basis
{z1, . . . , zn}. For an element r ∈ R we define by λr : R → R the mapping of multiplication by
r; that is λr(z) = rz for every z ∈ R. Then we define the norm N(r) and the trace Tr(r) of an
element r ∈ R as the determinant and the trace of M(λr), respectively, i.e.,

N(r) := det(M(λr)), Tr(r) := Tr(M(λr)).
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Note that these are unique despite of the used basis {z1, . . . , zn}. Similarly we define by Tri and
Trij the corresponding traces for Ri and Rij . We can canonically extend these notions to K and

K by everywhere replacing Z by Q and R, respectively.
Now we need a final ingredient. In particular, since the exponential sums will extend over the

traces of elements we have to take the representants in the right ideal for the separation of the
residue classes. In the classical case this is established by the usage of the different. Since in our
case we have that Rij are not necessarily the ring of integers, we have to generalize this concept.
To this end for M ⊂ K a Z-module we denote by M∗ the complementary set of M with respect
to Z, i.e.,

M∗ := {x ∈ K : Tr(x ·M) ⊂ Z}.
If we take M to be equal to the ring of integers of a number field K we get that the complementary
set is the inverse of the different M∗ = d−1 of this set. In our case we are not interested in the
ring of integers, but in the order R. We can show by similar means as for the different that R∗ is
a fractional ideal of K (cf. Chapter 13, (H) and (I) of [15]). In order to express the similarity of
the different d−1 and R∗ we write for short

r−1 := R∗ = {x ∈ K : Tr(x · O) ⊂ Z}.

Finally we denote for q an ideal of R by R(q) a complete set of residues modulo r−1. Similarly
we denote by R(qij) a complete set of the projection modulo r−1

ij := πij(r
−1).

After this definitions we are now able to state the corresponding lemma of Hua, which will help
us dropping the requirement, that the variable of summation lies in a certain residue class.

Lemma 4.1. Let q be an ideal of R. Then we have for z ∈ R that∑
ξ mod r−1

e(Tr(ξz)) =

{
|R(q)| if z ∈ q

0 otherwise,

where ξ runs over a complete set of residues of qr−1 mod r−1.

Proof. First we assume that q | z. Then ξz ∈ r−1, Tr(ξz) ∈ Z and e(Tr(ξz)) = 1 for all ξ. Thus
we have the first conclusion.

For the second conclusion we rewrite the sum. Noting that

Tr(z) =

t∑
i=1

Tri(zi) =

t∑
i=1

mi∑
j=1

Trij(zij)

where the traces denote the traces of the corresponding parts. Our choice of φ yields for the sum
that ∑

ξ∈R(q)

e(Tr(ξz)) =

t∏
i=1

mi∏
j=1

∑
ξ∈R(πij(q))

e(Trij(ξzij)).

Since Rij is an order in a number field the last sum now resembles the original one in Theorem 3
of Hua [6] and we may follow the proof there. If q - z, then there exists i and j such that qij - zij .
For this i and j there exists a ξ0 ∈ (qijrij)

−1 for which ξ0zij 6∈ r−1
ij . In fact, if for all ξ0 ∈ (qijrij)

−1

we have that ξ0zij ∈ r−1
ij , then

r−1
ij | (qijrij)

−1zij

and consequently qij | zij contradicting our hypothesis. By the definition of the complementary

set r−1
ij = R∗ij there is an integer y such that e(Trij(yξ0zij)) 6= 1. Since yξ0 ∈ (qijrij)

−1, we get
that ∑

ξ∈R(qij)

e(Trij(ξzij)) =
∑

ξ∈R(qij)

e(Trij((ξ + yξ0)zij)) = e(Trij(yξ0zij))
∑

ξ∈R(qij)

e(Trij(ξzij))

and the second conclusion follows. �
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The main idea is to apply the lemma above for the residue class of the elements and the
corresponding version in the integers for the residue class of the additive function. To this end we
will have to treat sums of the form

S(T, ξ, `) :=
∑

z∈R(T )

e

(
Tr(ξz) +

`

m
f(z)

)
,(4.1)

where ξ goes over all residue classes modulo s and ` over all modulo m. In the following two
lemmas we will distinguish the cases of m - ` and m | `. For the first one we will use the following

Lemma 4.2. Assume that the same conditions hold as in the statement of Theorem 2.2. For any
ξ ∈ K we have, if (p(1),m) = 1 and m - `,

S(T, ξ, `)� |R(T )|λ .(4.2)

Proof. Without loss of generality we may suppose that 1 ≤ ` ≤ m − 1. Since the estimation
depends on the sum of digits we will use an idea which goes back to Gelfond [4]. In particular, we
will consider all those elements having a bounded length of expansion and cover the set R(T ) by
its translates. To this end we define the set of all elements of R having length at most k by

Lk−1 :=

{
z ∈ R : z =

k−1∑
h=0

ahX
h, a ∈ N

}
.

Now we focus on the sum for z ∈ Lk−1. To this end we note the definition of sp to get∑
z∈Lk−1

e

(
Tr(ξz) +

`

m
sp(z)

)
=

k−1∏
h=0

|p(0)|−1∑
a=0

e

(
a

(
Tr(ξXh) +

`

m

))
.(4.3)

Noting that the sum in the product is a geometric sum we get

|p(0)|−1∑
a=0

e

(
a

(
Tr(ξXh) +

`

m

))
=

sin
(
π |p(0)|

(
Tr(ξXh) + `

m

))
sin
(
π
(
Tr(ξXh) + `

m

))(4.4)

We fix h and set for short

µr = Tr(ξXh+r) +
`

m
(0 ≤ r ≤ n).

Now we consider the (n+ 1)-fold product

Q =

∣∣∣∣ sin (π |p(0)|µ0)

sin (πµ0)
· · · sin (π |p(0)|µn)

sin (πµn)

∣∣∣∣ .
Writing p = a0 + a1X + · · ·+ an−1X

n−1 + anX
n we get

n∑
r=0

arµr =

n∑
r=0

ar Tr(ξXh+r) +
`

m

n∑
r=0

ar

= Tr(ξXh p) +
`

m

n∑
r=0

ar

=
`

m

n∑
r=0

ar.

Since (p(1),m) = (
∑n
r=0 ar,m) = 1 and 1 ≤ ` ≤ m− 1 we get that∥∥∥∥∥

n∑
r=0

arµr

∥∥∥∥∥ =

∥∥∥∥∥ `m
n∑
r=0

ar

∥∥∥∥∥ ≥ 1

m
.

Thus there exists a ρ ∈ {0, . . . , n} with

‖µρ‖ ≥
1

(n+ 1)amaxm
,(4.5)

where amax = max0≤r≤n ar.
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We return to the sum in (4.3). The idea is to trivially estimate every factor in the product,
except the one corresponding to ρ, where we apply (4.5). In particular, we note that the number
of summands on the left of (4.4) is |p(0)|, which yields trivially for r 6= ρ∣∣∣∣ sin (π |p(0)|µr)

sin (πµr)

∣∣∣∣ ≤ |p(0)| .

For the factor corresponding to ρ we use (4.5) to get∣∣∣∣ sin (π |p(0)|µr)
sin (πµr)

∣∣∣∣ ≤ ∣∣∣∣ sin (π |p(0)| /((n+ 1)amaxm))

sin (π/((n+ 1)amaxm))

∣∣∣∣ < |p(0)| .

Thus we get for the (n+ 1)-fold product

Q ≤ |p(0)|n
∣∣∣∣ sin (π |p(0)| /((n+ 1)amaxm))

sin (π/((n+ 1)amaxm))

∣∣∣∣ = |p(0)|λ2(n+1)

where

λ2 = log

(
|p(0)|

∣∣∣∣ sin (π |p(0)| /((n+ 1)amaxm))

sin (π/((n+ 1)amaxm))

∣∣∣∣) ((n+ 1) log |p(0)|)−1 < 1.

Plugging this into (4.3) yields∣∣∣∣∣∣
∑

z∈Lk−1

e

(
Tr(ξz) +

`

m
sp(z)

)∣∣∣∣∣∣ ≤ |p(0)|kλ2+n
.(4.6)

The idea now is to tessellate the set R(T ) by translates of Lk−1. To this end we note that for
z ∈ Lk−1 and a ∈ XkR we have by the additivity of the trace and the sum of digits function, that

e

(
Tr(ξ(z + a)) +

`

m
sp(z + a)

)
= e

(
Tr(ξa) +

`

m
sp(a)

)
e

(
Tr(ξz) +

`

m
sp(z)

)
.

This implies for all a ∈ XkR∣∣∣∣∣∣
∑

z∈Lk−1+a

e

(
Tr(ξz) +

`

m
sp(z)

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

z∈Lk−1

e

(
Tr(ξ(z + a)) +

`

m
sp(z + a)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

z∈Lk−1

e

(
Tr(ξz) +

`

m
sp(z)

)∣∣∣∣∣∣
≤ |p(0)|kλ2+n

.

Now we count the number of sets Lk−1 + a with a ∈ XkR, which lie completely in R(T ) and
those covering the border, respectively. In particular, we define the sets

X :=
{
a ∈ XkR : (Lk−1 + a) ⊂ R(T )

}
,

Y :=
{
a ∈ XkR : (Lk−1 + a) ∩R(T ) 6= ∅ and (Lk−1 + a) ∩ (R \R(T )) 6= ∅

}
.

Thus we get∣∣∣∣∣∣
∑

z∈R(T )

e

(
Tr(ξz) +

`

m
sp(z)

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
a∈X

∑
z∈Lk−1+a

e

(
Tr(ξz) +

`

m
sp(z)

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
a∈Y

∑
z∈(Lk−1+a)∩R(T )

e

(
Tr(ξz) +

`

m
sp(z)

)∣∣∣∣∣∣
≤ |X| |p(0)|kλ2+n

+ |Y | |Lk−1| .
Using Proposition 3.2 for the estimation of the number of elements in X yields

|X| � |R(T )|
Vol(Λ) |p(0)|k

.
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The idea for the estimation of the elements in Y , which are the elements near the border is to
shrink and increase S(T ) a bit in order to cover the area near the border by its difference. Thus
we define for δ > 0, i = 1, . . . , t and j = 1, . . . ,mi the sets Sij(T )± by

|xk| ≤ lijk(T )± δ,
x2
k + x2

k+1 ≤ lijk(T )2 ± δ.

In the same manner as above S(T )± is the product of the sets Sij(T )±,i.e.,

S(T )± =
{
z ∈ Rn : zij ∈ S±ij (T )

}
.(4.7)

Since diam(`k−1 + a) ≤ |p(0)|diam(G) we set δ = |p(0)|diam(G). Thus as one easily checks

λ
(
S(T )+ \ S(T )−

)
� |S(T )|1−α |p(0)|k .

It follows by Proposition 3.2 that λ(Lk−1 + a) = |p(0)|k λ(G) and therefore

|Y | � |R(T )|1−α .
Putting the two estimates together yields∣∣∣∣∣∣

∑
z∈R(T )

e

(
Tr(ξz) +

`

m
sp(z)

)∣∣∣∣∣∣� |R(T )|
Vol(Λ) |p(0)|k

|p(0)|kλ2+n
+ |R(T )|1−α |p(0)|k .

Finally we set

k :=
⌊α

2
log|p(0)| (|R(T )|)

⌋
,

which yields ∣∣∣∣∣∣
∑

z∈R(T )

e

(
Tr(ξz) +

`

m
sp(z)

)∣∣∣∣∣∣� |R(T )|1−((1−λ2)α2 )
+ |R(T )|1−

α
2 .

This proves the proposition for λ = max(1− ((1− λ2)α2 ), 1− α
2 ).

�

For the second case we have an exponential sum in a number field which we treat by usual
means.

Lemma 4.3. Assume that the same conditions hold as in the statement of Theorem 2.2. Let q be
an ideal of R. Then ∑

ξ 6≡0 mod r−1

∑
z∈R(T )

e (Tr(ξz))� R(q) |R(T )|1−α ,

where α > 0 and ξ runs over a complete set of residues of qr−1 mod r−1 not containing the element
0 mod r−1.

Proof. Since the sum of digits function is missing here, we may use the structure of R and the
projections πij in order to estimate this sum. Thus it suffices to focus on a single Rij only. In
particular, let rij := πij(r) then as ξ runs through a complete set of residues modulo r−1, so does

ξij := πij(ξ) for r−1
ij . Thus it suffices to estimate∑

ξ 6≡0 mod r−1

∑
z∈R(T )

e (Tr(ξz)) =

t∏
i=1

mi∏
j=1

∑′

ξij mod r−1
ij

∑
zij∈Rij(T )

e (Trij(ξijzij))

where
∑′

denotes that we exclude the case where all ξij = 0 which corresponds to ξ ≡ 0 mod r−1.

Throughout the rest of the proof we fix i and j such that ξij 6≡ 0 mod r−1
ij . We drop the indices

where possible, i.e., we set R = Rij , r = rij and q = π(qij). Let β := βi1 be a zero of pi, then
clearly R ∼= Z[β]. Let K := Q(β) be the corresponding algebraic number field an ZK be its ring
of integers. Then R ⊂ ZK is an order in K and r−1 = R∗ (where the complement is with respect
to K). We denote by Tr the trace and by N the norm of an element of K over Q, respectively.
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Let R be a complete residue system modq. As in the proof of Lemma 4.2 we want to tessellate
the set R(T ) by translates of R. To this end we again distinguish between those translates being
totally inside and those covering the border. In particular, we define the sets,

X := {a ∈ q : a+R ⊂ R(T )} ,
Y := {a ∈ q : (a+R) ∩R(T ) 6= ∅ and (a+R) ∩ (R \R(T )) 6= ∅} .

Then we may split up the sum under consideration as follows∑
ξ 6≡0 mod r−1

∑
z∈R(T )

e (Tr(ξz)) =
∑

ξ 6≡0 mod r−1

∑
a∈X

∑
z∈a+R

e (Tr(ξz))

+
∑

ξ 6≡0 mod r−1

∑
a∈Y

∑
z∈(a+R)∩R(T )

e (Tr(ξz))

=: R1 +R2.

We start with the estimation of R1. Because qr(qr)−1 = ZK, there exists an s ∈ qr with
s−1 ∈ (qr)−1. Thus we have ∑

z∈a+R

e (Tr(ξz)) =
∑

z∈a+R

e
(

Tr
(z
s
ξs
))

.

Since s−1z runs through a complete set of residues mod r−1 in (qr)−1) and since ξs 6∈ q is an
algebraic integer, we get by an application of Lemma 4.1 that∑

z∈a+R

e (Tr(ξz)) = 0

and hence R1 = 0.
For R2 we get together with Lemma 4.1 that∣∣∣∣∣∣
∑
a∈Y

∑
z∈(a+R)∩R(T )

∑
ξ 6≡0 mod r−1

e (Tr(ξz))

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
a∈Y

∑
z∈(a+R)∩R(T )

 ∑
ξ mod r−1

e (Tr(ξz)) + R(q)

∣∣∣∣∣∣
≤

∣∣∣∣∣∑
a∈Y

2R(q)

∣∣∣∣∣ .
Now we want to use the same idea for counting the number of elements near the border, as in

the proof of Lemma 4.2. To this end we recall the definition of S(T )± in (4.7). Rephrasing the

steps with a+R instead of Lk−1 + a yields Y � |R(T )|1−α and thus we get in the same manner
as above that

R2 � N(q) |R(T )|1−α .

which proves the lemma. �

5. Proof of the Theorems 2.2 and 2.3

Proof of Theorem 2.2. Throughout this proof we fix the ideal s C R and a system of residues ξ
mod s. Since π is an isomorphism we get that

π(s) = (s1, . . . , st) = (s11, . . . , st,mt),

where si := πi(s) and sij := πij(s) for i = 1, . . . , t and j = 1, . . . ,mi.
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By an application of Lemma 4.1 we can rephrase Vp(R(T )) as follows

#Vp(R(T )) = # {z ∈ R : z ≡ a mod s and sp(z) ≡ h mod m}

=
1

m

m−1∑
w=0

1

|R(s)|
∑

ξ mod r−1

∑
z∈R(T )

e

(
Tr(ξ(z − a)) + w

sp(z)− h
m

)

=
|R(T )|
m |R(s)|

+
1

m |R(s)|
∑

ξ 6≡0 mod r−1

∑
z∈R(T )

e (Tr(ξ(z − a)))

+
1

m |R(s)|
∑

ξ mod r−1

m−1∑
w=1

∑
z∈R(T )

e

(
Tr(ξ(z − a)) + w

sp(z)− h
m

)
.

Now we estimate ∑
ξ 6≡0 mod r−1

∑
z∈R(T )

e (Tr(ξ(z − a)))� |R(s)| |R(T )|1−α

with help of Lemma 4.3 and

∑
ξ mod r−1

m−1∑
w=1

∑
z∈R(T )

e

(
Tr(ξ(z − a)) + w

sp(z)− h
m

)
� |R(T )|λ1

with help of Lemma 4.2 which proves the theorem. �

Proof of Theorem 2.3. Let q be an ideal of R such that

{x+ y − z : x ∈ A,B, z ∈ 2R(T )} ∩ q = {0},
{x1 − x2 : x1, x2 ∈ A} ∩ q = {0},
{y1 − y2 : y1, y2 ∈ B} ∩ q = {0}.

(5.1)

Clearly q depends on T but this will cause no problems in our proof. In order to simplify notation
we define functions separating x ∈ A, y ∈ B and z ∈ 2R(T ), i.e.,

F (ξ) :=
∑
x∈A

e(Tr(ξx)), G(ξ) :=
∑
y∈B

e(Tr(ξy)),

Hw(ξ, 2R(T )) :=
∑

z∈2R(T )

e
(

Tr(ξz) +
w

m
sp(z)

)
, Iw :=

1

N(q)

∑
ξ

F (ξ)G(ξ)Hw(ξ, 2R(T )),

where
∑
ξ runs over a complete set of residues mod r−1 in (qr)−1. Now by an application of

Lemma 4.1 we may write

m · |{(x, y) ∈ A× B : x+ y ∈ Uh,m(2R(T ))}| =
m−1∑
w=0

Iw

As in the proof of Theorem 2.2 we separate the term I0 and get by noting the requirements on
q in (5.1) that

I0 =
1

N(q)

∑
ξ

∑
x∈A

∑
y∈B

∑
z∈2R(T )

e(Tr(ξ(x+ y − z))) =
∑
x∈A

∑
y∈B

1 = |A| |B| .

Thus subtracting the main part and taking the modulus yields∣∣∣∣m · |{(x, y) ∈ A× B : x+ y ∈ Uh,m(2R(T ))}| − |A| |B|
m

∣∣∣∣ =

∣∣∣∣∣
m−1∑
w=1

Iw

∣∣∣∣∣ ≤
m−1∑
w=1

|Iw| .
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In order to estimate Iw for 1 ≤ w ≤ m − 1 we use Cauchy’s inequality together with Lemma
4.2 to gain

|Iw| ≤
maxη∈K(|Hw(η, 2R(T ))|)

N(q)

∑
ξ

|F (ξ)| |G(ξ)|

≤ γ1 |2R(T )|λ1

N(q)

∑
ξ

|F (ξ)|2
∑

ξ

|G(ξ)|2
 1

2

≤ γ1 |2R(T )|λ1

N(q)

(
N(q)2 |A| |B|

) 1
2

� γ1 |2R(T )|λ1 (|A| |B|)
1
2 .

This proves Theorem 2.3. �
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[10] B. Kovács and A. Pethő, Number systems in integral domains, especially in orders of algebraic number fields,

Acta Sci. Math. (Szeged) 55 (1991), no. 3-4, 287–299.
[11] , On a representation of algebraic integers, Studia Sci. Math. Hungar. 27 (1992), no. 1-2, 169–172.
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