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Abstract. Let sq denote the q-ary sum-of-digits function and let P1(X),
P2(X) ∈ Z[X] with P1(N), P2(N) ⊂ N be polynomials of degree h, l ≥ 1,
h 6= l, respectively. In this note we show that (sq(P1(n))/sq(P2(n)))n≥1

is dense in R+. This extends work by Stolarsky (1978) and Hare,
Laishram and Stoll (2011).

1. Introduction

Let q ≥ 2. Then we can express n ∈ N uniquely in base q as

n =
∑
j≥0

njq
j , nj ∈ {0, 1, . . . , q − 1}.(1)

Denote by sq(n) =
∑

j≥0 nj the sum of digits of n in base q. The sum
of digits of polynomial values has been at the center of interest in many
works. We mention the (still open) conjecture of Gelfond [5] from 1967/68
about the distribution of sq of polynomial values in arithmetic progressions
(see also [4, 7, 10]) and the fundamental work of Bassily and Kátai [1] on
central limit theorems satisfied by sq supported on polynomial values resp.
polynomial values with prime arguments.

In 1978, Stolarsky [9] examined the pointwise relationship between sq(n
h)

and sq(n), where h ≥ 2 is a fixed integer. In particular, he used a result of
Bose and Chowla [2] to prove that

(2) lim sup
n→∞

s2(n
h)

s2(n)
=∞.

Hare, Laishram and Stoll [6] generalized (2) to an arbitrary polynomial
P (X) ∈ Z[X] of degree h ≥ 2 in place of Xh, and to base q in place of the
binary base. Moreover, they showed that on the other side of the spectrum,

(3) lim inf
n→∞

sq(P (n))

sq(n)
= 0,

confirming a conjecture of Stolarsky.
From another point of view, not much is known about the pointwise

relationship between the sum-of-digits of the values of two distinct fixed
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integer-valued polynomials P1(X), P2(X). Building up on work by Dr-
mota [3], Steiner [8] showed that the distribution of the two-dimensional
vector (sq(P1(n)), sq(P2(n)))n≥1 obeys a central limit law (in fact, his re-
sults apply for general vectors and general q-additive functions). However,
there are no local results available, such as an asymptotic formula or even
a non-trivial lower estimate for

(4) #{n < x : sq(P1(n)) = k1, sq(P2(n)) = k2},
where k1 and k2 are fixed positive integers.

The purpose of the present work is to extend both (2) and (3), and to
make a first step towards understanding (4).

Our main result is as follows:

Theorem 1.1. Let P1(X), P2(X) ∈ Z[X] be polynomials of distinct degrees
h, l ≥ 1 with P1(N), P2(N) ⊂ N. Then(

sq(P1(n))

sq(P2(n))

)
n≥1

is dense in R+.

Remark 1. The proof extends to strictly q-additive functions in place of the
sum-of-digits function sq (we need, however, the condition that the weight
attached to the digit q − 1 is positive, cf. (19)). Recall that a strictly q-
additive function f is a real-valued function f defined on the non-negative
integers which satisfies f(0) = 0 and f(n) =

∑
j≥0 f(nj), where the nj are

the digits in the q-adic expansion (cf. (1)).

We first state some notation that is used throughout the paper. For
integers a, b with b < a we will write [b, a] for the set of integers {b, b +
1, . . . , a}. For sets A and B, we write mA = {a1 + · · · + am : ai ∈ A, 1 ≤
i ≤ m} and A+B = {a+ b : a ∈ A, b ∈ B}. For the sake of simplicity, we
allow all constants to depend on q without further mentioning. Since we fix
q already in the beginning there is not much harm to do so.

2. Proof of the main result

The proof of Theorem 1.1 will proceed in several steps. We first address
the case P1(X) = Xh, P2(X) = X l which can be dealt with in a well
arranged manner. The key idea in the proof is that sq(q

u) = 1 whereas
sq(q

u − 1) = (q − 1)u, so that the first value is independent of u (and
negligable, as u → ∞) and the second one increases as u increases. In
order to exploit this, we construct in Section 2.1 a polynomial p(X) and
determine the number of negative coefficients in p(X)t for t ≥ 2. In Section
2.2 we then show that, given a real number r ∈ (0, 1), we can choose the
parameters of the polynomial in such a way that the ratios of the numbers of
negative coefficients of p(X)h and p(X)l approximate r arbitrarily well. In
Section 2.3 we link this ratio to the ratio of the sum-of-digits function under
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question and show that we obtain the same limit. The final two sections
concern the generalization to arbitrary r ∈ R+ and to arbitrary polynomials
P1(X), P2(X), respectively.

2.1. Construction of the polynomial p(X). In this section we construct
the polynomial p(X) which we will use later to approximate a given positive
real ratio r. Let a, b, c, d, e ∈ N with a > b > c ≥ d > e > 0 and set

A1 = [0, e], A2 = [d, c], A3 = [b, a].

Let k ∈ N and define1 the polynomial p(X) ∈ Z[X] by

(5) p(X) = qk
∑
i∈A1

Xi −
∑
i∈A2

Xi + qk
∑
i∈A3

Xi.

The reason for putting these weights to the powers Xi is our simple wish
to control the number of negative coefficients in the expansion of p(X)t. In
fact, we will choose k in such a way that in the expansion of the power p(X)t

the terms that only use the coefficients qk dominate over those terms that
involve −1 terms in the product. Later on, we will evaluate p(X)t at X = qu

for some large u, so we also need to have good control on the sum of digits
of this value. To achieve this goal, we suppose that A1 and A3 have the
same size and that the set A2 lies symmetric around a/2. More precisely,
we suppose that

(6) e = a− b and a = c+ d.

Denote by t ≥ 2 a fixed integer. We now look at the sign structure of the
coefficients in the expansion of p(X)t. For 0 ≤ i ≤ t set

(7) Qi = iA1 + (t− i)A3 = [(t− i)b, ie+ (t− i)a] = [(t− i)b, ta− ib].
By (6) and (7) the sets Qi, 1 ≤ i ≤ t, are pairwise disjoint provided that

a

b
<
t+ 1

t
.(8)

We note that the function on the right hand side is decreasing in t. We
claim that there exists an integer k0(t, a) > 0 such that for k ≥ k0(t, a) all
the coefficients of p(X)t of the powers

Xm with m ∈
t⋃
i=0

Qi

are positive. To see this, we note that the positive coefficients of p(X)
that contribute to Xm have total weight at least qtk, whereas the total
contribution to Xm of terms that involve at least one negative coefficient of
p(X) is Ot,a(q

(t−1)k) (where the implied constant depends on t and a). In
other terms, for each t and a there is k0(t, a) > 0 such that for all k ≥ k0(t, a)
the coefficients of p(X)t belonging to powers of the sets Qi are positive.

1It is worth mentioning that the degree four polynomial used in [6] is exactly of this
form with (a, b, c, d, e) = (4, 3, 2, 2, 1).
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For 0 ≤ i ≤ t− 1, we call

Gi = [1 + maxQi+1, −1 + minQi] = [ta− (i+ 1)b+ 1, (t− i)b− 1]

the gap between Qi+1 and Qi. Each Gi contains

(9) (t− i)b− 1− (ta− (i+ 1)b+ 1) + 1 = (t+ 1)b− ta− 1

integers. This quantity is independent of i. Our aim is to determine sufficient
conditions under which all the gaps in the expansion of p(X)t are “filled”
with powers having negative coefficients. Otherwise said, we want that

Xm with m ∈
t−1⋃
i=0

Gi

all have negative coefficients. Since the Qi’s are disjoint, for each Xm with
m ∈

⋃t−1
i=0Gi there must be a contributing term that involves at least one

coefficient attached to some power with exponent in A2. We use a similar
argument as above: The total contribution from coefficients that involve ≥ 2
terms from A2 is Ot,a(q

(t−2)k). On the other hand, the total weight of those
contributions that involve exactly one coefficient from A2 is (in modulus) at

least q(t−1)k. Therefore, there exists an integer k1(t, a) > 0 such that for all
k ≥ k1(t, a) the contributions of the terms that use exactly one term from
A2 are dominating.

The negative coefficients originate from terms that use one, three etc.
factors with exponents in A2. According to the previous reasoning, it is
sufficient to consider only those negative coefficients that use just one single
factor. We define

Ni = iA1 +A2 + (t− 1− i)A3, 0 ≤ i ≤ t− 1.

Again by (6), this simplifies to

(10) Ni = [(a− c) + (t− 1− i)b, i(a− b) + c+ (t− 1− i)a].

As indicated above, we will completely fill the gaps between two blocks of
positive coefficients by negative ones. To achieve this goal, we suppose that
for all i with 0 ≤ i ≤ t− 1,

maxNi ≥ minQi and maxQi+1 ≥ minNi.

It is a straightforward calculation that both inequalities reduce to the same
inequality, namely,

(t− 1)a+ c ≥ tb,(11)

which is independent of i.
Denote by Ct(p) the number of negative coefficients in the expansion of

p(X)t. We first want to show that for 1 ≤ l < h and each r ∈ R with
r ∈ (0, 1) there exists (a, b, c, d, e) such that Ch(p)/Cl(p) is “close” to r. In
fact, our construction will yield an infinite sequence of quintuples (a, b, c, d, e)
such that the ratio is arbitrarily close to r. A simple observation then gives
the result for any real number r ∈ R+ as well as for 1 ≤ h < l.
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As for now, let us assume that 2 ≤ l < h. Since we are interested in the
ratio Ch(X)/Cl(X) we apply the reasoning from above to p(X)h and p(X)l.
The condition (11) gives

(12) (h− 1)a+ c ≥ hb and (l − 1)a+ c ≥ lb.
Combining the inequalities (12) with (8) and (6) we get that all gaps are
filled with powers having negative coefficients provided that

(13)
a

b
<
h+ 1

h
<
l + 1

l

and

(14) b > c ≥ max
(a

2
, hb− (h− 1)a, lb− (l − 1)a

)
.

We want to find sufficient conditions under which this interval for c is not
empty. First, a/2 ≤ b−1 is equivalent to a

b ≤ 2− 2
b and (13) is stronger than

this inequality provided that b ≥ 4. On the other hand, we automatically
have hb − (h − 1)a ≤ b − 1 and lb − (l − 1)a ≤ b − 1 because h, l ≥ 2 and
a > b. Summing up, whenever

a > b ≥ 4 and a/b < (h+ 1)/h,

we can find c and therefore by our restrictions in (6) also d and e such that all
gaps in p(X)h and p(X)l are filled with powers having negative coefficients.

The same reasoning can be used to deal with l = 1. In this case, however,
we are forced to take c = b−1. There is no additional condition such as (13)
or (14), and the gap is completely filled.

2.2. The number of negative coefficients of p(X)h and p(X)`. Again
let us first assume that 2 ≤ l < h. Now we count the numbers of powers that
have negative coefficients in the expansions of p(X)h and p(X)l, respectively.
There are exactly h resp. l gaps in p(X)h resp. p(X)l. Therefore, by (9)
and (13),

Ct(p) = t((t+ 1)b− ta− 1), t ≥ 2,

and
Ch(p)

Cl(p)
=
h

l
·

(h+ 1)− h a
b −

1
b

(l + 1)− l ab −
1
b

.

We consider the function f : R \ {(l + 1)/l} → R,

f(x) =
h

l
· (h+ 1)− hx

(l + 1)− lx
.

A first observation is that

f

(
h+ l + 1

h+ l

)
= 1 and f

(
h+ 1

h

)
= 0,

and that for all x 6= l+1
l ,

f ′(x) = − h(h− l)
l(lx− l − 1)2

< 0.
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Thus, f is non-negative and strictly decreasing on the real interval

I =

[
h+ l + 1

h+ l
,
h+ 1

h

]
and, in particular, η := maxx∈I |f ′(x)| > 0. Let r ∈ (0, 1) and ε > 0 be given
real numbers. Since f is uniformly continuous on I there exists b0 = b0(ε) ≥
4 such that for all b ≥ b0 and x ∈ I,

(15)

∣∣∣∣∣f(x)− h

l
·

(h+ 1)− hx− 1
b

(l + 1)− lx− 1
b

∣∣∣∣∣ < ε

4
.

Let ξ ∈ I be the unique real number such that f(ξ) = r. Then there exist
integers a, b with a > b ≥ b0(ε) and a/b ∈ I such that

(16)
∣∣∣ξ − a

b

∣∣∣ < ε

4η
.

(In fact there is an infinity of such pairs (a, b); note that we do not restrict a
and b to coprime integers.) From now on, let a and b be fixed integers that
satisfy (16). We then choose an integer c in the interval given by (14) (for
instance, c = b− 1 is an admissible value).

Next, we turn to the ratio Ch(p)/Cl(p). The inequalities (15) and (16)
yield ∣∣∣∣Ch(p)

Cl(p)
− r
∣∣∣∣ ≤ ∣∣∣∣Ch(p)

Cl(p)
− f

(a
b

)∣∣∣∣+
∣∣∣f (a

b

)
− f(ξ)

∣∣∣(17)

<
ε

4
+ η ·

∣∣∣ξ − a

b

∣∣∣ < ε

2
.

In the case of l = 1 we get C1(p) = 2b − a − 1 and the same argument
applies.

2.3. A first approximation. From now on, suppose that 1 ≤ l < h. We
turn our attention to the ratio sq(n

h)/sq(n
l). We show that for n = p(qu)

and u→∞, we have

sq(n
h)/sq(n

l)→ Ch(p)/Cl(p).

Let

k > max (k0(h, a), k0(l, a), k1(h, a), k1(l, a))

and take it to be a fixed value. For ε > 0 and r ∈ (0, 1) we have constructed
in the previous section a concrete polynomial p(X) of the form (5) that
satifies (17).

Since by now p(X) is fixed and only depends on r, ε, h and l, we have
also that there is ∆ = ∆(r, ε, h, l) > 0 such that

(18) max

(
max

0≤m≤ah

∣∣∣[Xm]p(X)h
∣∣∣ , max

0≤m≤al

∣∣∣[Xm]p(X)l
∣∣∣) < ∆.

Obviously, there exists u0 = u0(r, ε, h, l) such that for all u ≥ u0 we have
qu > ∆. We now use the splitting property of the sum-of-digits function
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(see [6, Proposition 2.1] for a proof): For all m1, u ≥ 1 and 1 ≤ m2 < qu we
have

sq(m1q
u +m2) = sq(m1) + sq(m2),(19)

sq(m1q
u −m2) = sq(m1 − 1) + (q − 1)u− sq(m2 − 1).

By (18), we can successively apply (19) to the terms in the expansion of
p(qu)h and p(qu)l, respectively (It is sufficient to observe that by our choice
of k each coefficient is larger than or equal to 1 in modulus and smaller than
∆ in modulus). This yields

(20)
sq(p(q

u)h)

sq(p(qu)l)
=
Ch(p)u(q − 1) +M1(r, ε, h, l)

Cl(p)u(q − 1) +M2(r, ε, h, l)
,

where M1 = M1(r, ε, h, l) and M2 = M2(r, ε, h, l) are independent of u for
u ≥ u0. Moreover, for the given ε > 0 there exists u1 = u1(r, ε, h, l) > 0
such that for all u ≥ u1,∣∣∣∣∣Ch(p) + M1

u(q−1)

Cl(p) + M2
u(q−1)

− Ch(p))

Cl(p)

∣∣∣∣∣ < ε

2
.

Now, choose u ≥ max(u0, u1). Then, again by the triangle inequality, we
get ∣∣∣∣sq(p(qu)h)

sq(p(qu)l)
− r
∣∣∣∣ ≤

∣∣∣∣∣Ch(p) + M1
u(q−1)

Cl(p) + M2
u(q−1)

− Ch(p))

Cl(p)

∣∣∣∣∣+

∣∣∣∣Ch(p)

Cl(p)
− r
∣∣∣∣

<
ε

2
+
ε

2
= ε.

This already proves that for 1 ≤ l < h the sequence
(
sq(n

h)/sq(n
l)
)
n≥1 lies

dense in (0, 1).

2.4. The generalization to arbitrary r ∈ R+. We now show how to
approximate r ∈ R+ that lie outside of (0, 1). Recall that we still assume
that 1 ≤ l < h. Denote by ν = ν(r, h, l) the minimal positive integer such
that

(21) r0 = r ·
(
h+ 1

l + 1

)−ν
∈ (0, 1).

We construct p(X) in the same manner as before, where r is replaced by r0

and ε by ε
(
h+1
l+1

)−ν
. Now, define

p0(X) = p(X), pi+1(X) = pi(X)(1 +Xwi), 0 ≤ i ≤ ν − 1,
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where wi = wi(pi, ν) is a large integer. Then it is easy to see that Ch(pi+1) =
2(h+ 1)Ch(pi) and that Ch(pν) = 2ν(h+ 1)νCh(p). We therefore get∣∣∣∣Ch(pν)

Cl(pν)
− r
∣∣∣∣ =

(h+ 1)ν

(l + 1)ν
·
∣∣∣∣Ch(p)

Cl(p)
− r0

∣∣∣∣
<

(h+ 1)ν

(l + 1)ν
· ε

2
·
(
h+ 1

l + 1

)−ν
=
ε

2
.

Hence we can use exactly the same argument as before where instead of
p(X) we use the polynomial pν(X).

Finally, let l > h ≥ 1 and let ε′ > 0. We have shown that for all r ∈ R+

and

(22) ε := min

(
r

2
,

ε′r2

2 + ε′r

)
> 0

there is an integer n such that∣∣∣∣ sq(nl)sq(nh)
− r
∣∣∣∣ < ε.

Note that by (22), we have r − ε > 0. When we distinguish the two cases
corresponding to the minimum in (22) we see that the same integer n also
verifies ∣∣∣∣sq(nh)

sq(nl)
− 1

r

∣∣∣∣ =

∣∣∣∣∣∣
r − sq(nl)

sq(nh)

r
sq(nl)
sq(nh)

∣∣∣∣∣∣ < ε

r(r − ε)
≤ ε′

2
< ε′.

This completes the proof of Theorem 1.1 in the case of P1(X) = Xh,
P2(X) = X l with h 6= l.

2.5. The case of general polynomials. The general case of polynomials
P1(X), P2(X) ∈ Z[X] with P1(N), P2(N) ⊂ N follows rather directly from
the discussion for monomials. To begin with, there exists n0 = n0(P1, P2)
such that both P1(n + n0) and P2(n + n0) only have positive coefficients.
We can therefore assume, without loss of generality, that both P1(X) and
P2(X) have positive coefficients which are bounded by some constant only
depending on P1 and P2. We construct p(X) as before with the monomials
Xh, X l in place of P1(X), P2(X). We claim that the approach with p(X)
works as good as for P1(X), P2(X), provided k ≥ k(P1, P2) is sufficiently
large.

Let t ≥ 1 and consider

P (X) =

t∑
j=0

cjX
j , cj > 0, 0 ≤ j ≤ t.

It is sufficient to show that P (p(X)) has the same sign structure in its
expansion as p(X)t provided that k = k(P ) is sufficiently large. First, we
know that our construction fills up completely the gaps between Qi+1(p(X)t)
and Qi(p(X)t) for any sufficiently large (fixed) k. Moreover, recall that we
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have shown that for 1 ≤ j ≤ t and 0 ≤ i ≤ j, the total weight attached to
each power Xm with m ∈ Qi(p(X)j) (resp. Gi(p(X)j)) is at least qjk (resp.

is Oa,j(q
(j−1)k)).

Now, the relations (7), (10) and a comparison of the interval bounds imply
that for all i, j and v with 0 ≤ i ≤ t− 1, 1 ≤ j ≤ t− 1 and 0 ≤ v ≤ j,

Gi(p(X)t) ∩Qv(p(X)j) = ∅.

This means, that P (p(X)) has at least the same number of powers with
negative coefficients as p(X)t. On the other hand, if

Qi(p(X)t) ∩Gv(p(X)j) 6= ∅

then, as the weight associated to elements of Qi(p(X)t) is dominant, we can
find a sufficiently large k such that the coefficients to powers Xm for m ∈⋃

0≤i≤tQi(p(X)) are positive. This shows, in particular, that for sufficiently

large k the number of negative coefficients in the expansions of P1(p(X))
(resp. P2(p(X))) is Ch(p) (resp. Cl(p)) and the same proof as before can be
applied.

This completes the proof of Theorem 1.1. �
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