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Abstract. The aim of the present paper is the estimation of the dth moment of additive

functions in canonical number systems. These number systems are generalizations of the decimal
number system to arbitrary polynomials having integer coefficient. We call a function additive

(with respect to a number system) if it only acts on the digits of an expansion. The sum-of-

digits function, as a special additive function, has been analyzed in the case of q-adic number
systems by Delange and number systems in number fields by Gittenberger and Thuswaldner.

The present paper is a generalization of these results to arbitrary additive functions in canonical

number systems.

1. Introduction

Let q ≥ 2 be a positive integer, then we define the sum-of-digits function sq as follows

sq(z) =
∑̀
h=0

ah for z =
∑̀
h=0

ahq
h.

This function has been studied from different aspects and the first result is due to Delange [7].
This result deals with the arithmetic mean of sq(z). In particular, Delange was able to show that

1

N

∑
z<N

sq(z) =
q − 1

2
logq N + Φ(logq N),

where Φ is a continuous, nowhere differentiable, 1-periodic function. The variance of sq(z) was
computed independently by Kennedy and Cooper [17] and Kirschenhofer [18]. They proved that

VN =
1

N

∑
z<N

s2q(z)−
1

N2

(∑
z<N

sq(z)

)2

=

(
q − 1

2

)2

logq N + Φ(logq N).

Finally a formula for the d-th moment was established by Grabner, Kirschenhofer, Prodinger and
Tichy [12].

Later all these results have been generalized to the case of canonical number systems. Now
we briefly summarize the most important results in this direction. For this we need to introduce
some further notation. Let K be a number field of degree n and ZK be its ring of integers. Denote
by DK the discriminant of K. Let b ∈ ZK and N := {0, 1, . . . , |N(b)| − 1}, where N(b) denotes
the norm of b over Q. Then the pair (b,N ) is called a canonical number system in ZK if each
0 6= z ∈ ZK admits a finite and unique representation of the form

z =
∑̀
h=0

ahb
h

with ah ∈ N for 0 ≤ h ≤ ` and a` 6= 0 if ` 6= 0. Furthermore we call b the base and N the set of
digits.
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Similarly to the definition above, we define the sum-of-digits function sb by

sb(z) =
∑̀
h=0

ah for z =
∑̀
h=0

ahb
h.

A characterization for all possible bases together with an algorithm for determining bases was
given by Kovács and Pethő [19]. Unfortunately this characterization depends on the integral basis
of the field. This algorithm was improved and simplified in some cases by Akiyama and Pethő
in [3]. A completely new algorithm for the solutions of this problem was given by Brunotte [5].
Explicit characterizations for some classes of number fields were given by Gilbert [9] and in a series
of papers by Kátai, Kovács and Szabó [14–16].

For the Gaussian integers Kátai and Szabó [16] showed that the possible bases b are of the form
b = −u ± i with u ∈ N. Grabner, Kirschenhofer and Prodinger [11] generalized Delange’s result
to the Gaussian integers. In particular, they showed that

1

N

∑
|z|2<N

sb(z) =
πu2

2
logu2+1N + Φ(logu2+1N) +O

(
N−

1
2 logN

)
,

where the sum is extended over Gaussian integers z. In order to generalize this result to arbitrary
canonical number systems we have to define the proper area of summation. Therefore we define
the Minkowski-embedding φ(z) of K into Rn by

φ(z) := (z(1), . . . , z(s),<z(s+1),=z(s+1), . . . ,<z(s+t),=z(s+t)),(1.1)

where z(1), . . . , z(s) are the real and z(s+1), . . . , z(s+t) are the complex conjugates of z ∈ K. We
define the set C(X1, . . . , Xs, Xs+1, . . . , Xs+t) ⊂ Rn as generalization of the area of summation
from above. That is, let C(X1, . . . , Xs, Xs+1, . . . , Xs+t) consist of all vectors

(x1, . . . , xs, xs+1, ys+1, . . . , xs+t, ys+t) ∈ Rn,
whose coordinates satisfy

|xj | ≤ Xj (1 ≤ j ≤ s),
x2s+j + y2s+j ≤ Xs+j (1 ≤ j ≤ t).

With the help of this set we define

M (X1, . . . , Xs, Xs+1, . . . , Xs+t) = {z ∈ ZK : φ(z) ∈ C(X1, . . . , Xs, Xs+1, . . . , Xs+t)}.
We need a special version of the last set. In particular, we want to restrict the volume of our set

by N and put together all those points having a similar (up to a constant) maximum length ` of
expansion and to have a parameter x at hand to smoothly increase this length between two integer
values. Since the complex conjugates arise in pairs having the same norm we have to distinguish
two cases according to whether we have a completely real extension (s = 0) or not (s 6= 0).

If s 6= 0 then we choose an x with 1 < x <
∣∣b(1)∣∣ and set x1(x) = x and

xi(x) = aix+ ci; ai =

∣∣b(i)∣∣− 1∣∣b(1)∣∣− 1
, ci =

∣∣b(1)∣∣− ∣∣b(i)∣∣∣∣b(1)∣∣− 1
(i = 2, . . . , s);

xi(x) = aix+ ci; ai =

∣∣b(i)∣∣2 − 1∣∣b(1)∣∣− 1
, ci =

∣∣b(1)∣∣− ∣∣b(i)∣∣2∣∣b(1)∣∣− 1
(i = s+ 1, . . . , s+ t).

On the other hand, if s = 0 then we take an x such that 1 < x <
∣∣b(1)∣∣2 and set x1(x) = x and

xi(x) = aix+ ci; ai =

∣∣b(i)∣∣2 − 1∣∣b(1)∣∣2 − 1
, ci =

∣∣b(1)∣∣2 − ∣∣b(i)∣∣2∣∣b(1)∣∣2 − 1
(i = 2, . . . , t).

Finally we write for short

M(b, `, x) := M

(∣∣∣b(1)∣∣∣` x1(x), . . . ,
∣∣∣b(s+t)∣∣∣` xs+t(x)

)
,(1.2)
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where ` is a positive integer.
As we will see below we will relate the parameters N , ` and x defining the set M(b, `, x) such

that its volume increases with N , the elements have similar (up to a constant) maximum length
` and x is the parameter responsible for interpolation between two integers.

Thuswaldner [24] generalized the result of Delange [7] on the arithmetic mean to arbitrary
canonical number systems. He showed that

1

N

∑
z∈M(b,`,x)

sb(z) =
2sπt√
DK

N(b)− 1

2
logN(b)N + Φ

(
logN(b)N

)
+O

(
N−

1
n logN(b)N

)
.

The d-th moment of the sum-of-digits function was considered by Gittenberger and Thuswald-
ner [10], who could show that

1

N

∑
z∈M(b,`,x)

(sb(z))
d

=
2sπt√
DK

(
N(b)− 1

2

)d
logdN(b)N +

d−1∑
j=0

logjN(b)NΦj

(
logN(b)N

)
+O

(
N−

1
n logdN(b)N

)
.

2. Definitions and Results

The objective of this paper is the generalization of the last result by Gittenberger and Thuswald-
ner [10] in two directions. First we want to consider number systems in a quotient ring of the ring
of polynomials over the integers. The second direction is to replace the sum-of-digits function by
an arbitrary additive function with respect to a given number system.

To state our results we first have to define the relevant number systems in quotient rings of the
ring of polynomials over the integers.

Definition 2.1. Let p ∈ Z[X] be monic of degree n and let N be a subset of Z. The pair
(p,N ) is called a number system if for every g ∈ Z[X] \ {0} there exist unique ` ∈ N and
ah(g) ∈ N , h = 0, . . . , `; a`(g) 6= 0 such that

g ≡
∑̀
h=0

ah(g)Xh (mod p).(2.1)

In this case the integers ah(g) are called the digits and ` = `(a) the length of the representation.

This concept was introduced in [22] and was studied among others in [1,2,19,20]. It was proved
in [2], that N must be a complete residue system modulo p(0) including 0 and the zeroes of p are
lying outside or on the unit circle. However, following the argument of the proof of Theorem 6.1
of [22], which deals with the case p square free, one can prove that non of the zeroes of p are lying
on the unit circle (cf. [23]).

If p is irreducible then we may replace X by one of the roots β of p. Then we are in the case of
Z[X]/(p) ∼= Z[β] being an integral domain in an algebraic number field (cf. Section 1). Then we
may also denote the number system by the pair(β,N ) instead of (p,N ). For example, let q ≥ 2
be a positive integer. Then (p,N ) with p = X − q gives a number system in Z, which corresponds
to the number system (q,N ). Furthermore for u a positive integer and p = X2 + 2uX + (u2 + 1)
we get number systems in Z[i].

Now we would like to consider these more general number systems and consider additive func-
tions within them. These functions were introduced by Gel′fond [8] and studied among others by
Delange [6] and Kátai [13].

Definition 2.2. Let (p,N ) be a number system and g as in (2.1). A function f : Z[X] → R is
called additive if f(0) = 0 and

f(g) =
∑̀
h=0

f(ah(g)Xh).
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Furthermore we call a function f strictly additive if f(0) = 0 and the function value is independent
of the positions of the digits, i.e,

f(g) =
∑̀
h=0

f(ah(g)).

Clearly the sum-of-digits function sp is a special case of a strictly additive function with

sp(g) =
∑̀
h=0

ah(g),

where again g has a representation as in (2.1).
After defining the analogues of number systems and additive functions in these number systems,

we need a generalization of the set M(X1, . . . , Xs+t) from above. Therefore we take a closer look
at the structure of Z[X]/(p) and start by factoring p by

p :=

r∏
i=1

pmii

with pi ∈ Z[X] irreducible and deg pi = ni. Then we define by

R := Z[X]/(p) =

r⊕
i=1

Ri with Ri = Z[X]/ (pmii )

for i = 1, . . . , r the Z-module under consideration and in the same manner by

K := Q[X]/(p) =

r⊕
i=1

Ki with Ki = Q[X]/ (pmii )

for i = 1, . . . , r the corresponding vector space. Finally we denote by K the completion of K
according to the usual Euclidean distance.

In order to properly state our results we need a bounded area similar to M(b, `, x) in (1.2),
which is also compatible with the length of expansion. To this end we denote by βik the roots
of pi for i = 1, . . . , r and k = 1, . . . , ni. We may assume that these roots are ordered such
that for (si, ti) being the index of pi (i.e., si being the number of real roots and ti being the
number of pairs of complex roots, respectively) we have that βi1, . . . , βisi are the real roots and
(βi,si+1, βi,si+ti+1), . . . , (βi,si+ti , βi,si+2ti) are the pairs of complex roots of pi.

Now we define the parameters which help us bounding the length of the expansion of an element
g ∈ R. For this purpose let g ∈ Z[X] be a polynomial, and put

Bijk(g) :=
dj−1g

dXj−1

∣∣∣∣
X=βik

(i = 1, . . . , r; j = 1, . . . ,mi; k = 1, . . . , si + ti).

Then the following proposition connects the length of the expansion of g ∈ Z[X] with the values
Bijk(g) defined above.

Proposition 2.3 ( [21]). Assume that (p,N ) is a number system. Let N = max{|a| : a ∈ N}
and set

M(g) := max

{
log |Bijk(g)|

log |βik|
: i = 1, . . . , r; j = 1, . . . ,mi; k = 1, . . . , ni

}
.

If g ∈ Z[X] is of degree at most n− 1, then there exists a constant c > 0 and for any ε > 0 there
exists L = L(ε) such that if `(g) > L then

|`(g)−M(g)| ≤ c.(2.2)

After providing a bound for the length of expansion we are in the position to generalize the
above definition of M(b, `, x) and therefore the set C to this new situation. Therefore we need a
generalization of the Minkowski embedding. Since it is more convenient to start at the bottom
level we define φij for i = 1, . . . , r and j = 1, . . . ,mi by

φij(z) = (Bi,j,1(z), . . . , Bi,j,si(z),<Bi,j,si+1(z),=Bi,j,si+1(z), . . . ,<Bi,j,si+ti(z),=Bi,j,si+ti(z)) .
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Then we combine them to get φi for i = 1, . . . , r and φ, i.e.

φi(z) = (φi1(z), . . . , φimi(z))

and

φ(z) = (φ1(z), . . . , φt(z)).(2.3)

We note that for the case of K being a separable algebraic number field, i.e. mi = 1 for i = 1, . . . , r,
the definition of φ coincides with the one in (1.1).

A central step in the proof will be the switch from a sum over elements in the lattice R to an
integral over a bounded area C(X1, . . . , Xn) ⊂ Rn. In the same manner as in Section 1 we split
vectors in Rn up into its components according to the embeddings φi and φij . In particular, for
fixed x ∈ Rn we write

x = (x1, . . . ,xr) = (x11, . . . ,xrmr )

and

xij = (xij1, . . . , xi,j,si , xi,j,si+1, yi,j,si+1, . . . , xi,j,si+ti , yi,j,si+ti)

where xi ∈ Rmini , xij ∈ Rni , and xijk, yijk ∈ R respectively.
We shall use lattice theory in Rn. Therefore we define the bounded area C ⊂ Rn and use our

projections and embeddings to gain the “bounded area” in R. Thus for Xijk with i = 1, . . . , r,
j = 1, . . . ,mi, k = 1, . . . , ni let C(X111, . . . , Xr,mr,nr ) be the set of points x ∈ Rn such that

|xijk| ≤ Xijk (k = 1, . . . , si),

x2ijk + y2ijk ≤ X2
ijk (k = si + 1, . . . , si + ti).

Then M(X111, . . . , Xr,mr,nr ) is defined by

M(X111, . . . , Xr,mr,nr ) := {z ∈ R : φ(z) ∈ C(X111, . . . , Xr,mr,nr )} .
Now we have to guarantee that the area C grows smoothly with respect to the length of expan-

sions of the corresponding elements in M. Therefore we set for 0 < x < 1

xik(x) = (|βik| − 1)x+ 1 (i = 1, . . . , r, k = 1, . . . , si),

xik(x) = (|βik|2 − 1)x+ 1 (i = 1, . . . , r, k = si + 1, . . . , si + ti).

Note that since |βik| > 1 by [2], we have that xik(x) ≥ 0 for x ≥ 0. Finally we fix a positive
integer ` and set

Xijk = |βik|` xik(x)

for i = 1, . . . , r, j = 1, . . . ,mi and k = 1, . . . , ni and write for short

M(p, `, x) :=M(X111, . . . , Xr,mr,nr ).(2.4)

Our main result is the following

Theorem 2.4. Let (p,N ) be a number system and M = |p(0)|. Furthermore let f be a strictly
additive function in (p,N ) and µf be the mean of the values of f , i.e.,

µf :=
1

|N |
∑
a∈N

f(a).

If we set

N = M `
r∏
i=1

si+ti∏
k=1

(xik(x))mi ,

then we have

1

N

∑
z∈M(p,`,x)

(f(z))d = c(p)µdf logdM (N) +

d−1∑
j=0

logjM (N)Φj(logM N) +O
(
N−

1
n logdM N

)
,

where c(p) is a constant depending only on the ring R and thus on p and Φ0, . . . ,Φd−1 are con-
tinuous periodic functions of period 1.



6 M. G. MADRITSCH AND A. PETHŐ

We note that this theorem reduces to the results of Thuswaldner [24] and Gittenberger and
Thuswaldner [10] by setting p the characteristic polynomial of the algebraic integer b. Therefore
it can be seen as a direct generalization of these results.

Remark 2.5. We could generalize this result further, to additive functions. However, the state-
ment would be rather technical, so we do not give it here.

3. Proof of Theorem 2.4

In the present proof we want to apply Delange’s method (cf. [7]) and thus follow the ideas
in [11] and [24].We start with the definition of the fundamental domain as

F :=

z ∈ K
∣∣∣∣∣∣z =

∑
h≥1

ahX
−h, ah ∈ N

 .

It can be easily seen (cf. [4]) that F is compact.
As it is shown in Proposition 2.3 the length of expansion is uniformly bounded. Thus let

Xijk = |βik| for i = 1, . . . , r, j = 1, . . . ,mi and k = 1, . . . , ni. Then let L := maxz{`(z)}, where
the maximum is taken over all z ∈ R with (z + F) ∩M(X111, . . . , Xr,mr,sr+tr ) 6= ∅. Furthermore
let F` be the set of elements having at most ` digits in their fractional part, i.e.,

F` :=

{
z ∈ K

∣∣∣∣∣z =
∑̀
h=−L

ah(z)X−h, ah ∈ N

}
.

Clearly by the definition of L we get that all elements of M(X111, . . . , Xr,mr,sr+tr ) having at
most ` digits in their fractional part are contained in F`. Let us define by Sd(N) the sum we want
to estimate, i.e.,

Sd(N) = Sd(p, `, x) =
∑

z∈M(p,`,x)

(f(z))d.(3.1)

Using our definition of FK we can shift the “decimal dot” and rewrite the sum Sd(p, `, x) as

Sd(N) =
∑̀

h1,...,hd=−L

∑
z∈M(p,0,x)∩F`

f(ah1(z)) · · · f(ahd(z)).

Now we use Delange’s method together with the definition of our embedding φ defined in (2.3)
to rewrite the sum into an integral. Thus

Sd(N) = c(p)M `
∑̀

h1,...,hd=−L

∫
M(p,0,x)

f(ah1(φ−1(z))) · · · f(ahd(φ−1(z)))dλd(z) +O
(
`dM `n−1

n

)
,

where λd denotes the d-dimensional Lebesgue measure. Noting that the functions ah(φ−1(z)) are
constant for every piece of the tiling of Rn induced by the translates of φ(X−`F) we get that the
only difference of the sum and the integral are caused by the elements intersecting the boundary

of M(p, 0, x), whose number is O
(
M `n−1

n

)
. Since the product in the integrand is bounded and

we have O(`d) summands, the order of magnitude for the error term is O
(
`dM `n−1

n

)
. The factor

c(p)M ` is due to the volume of the fundamental domain of the lattice induced by the elements of
F`.

In the next step we want replace f(ah(φ−1(z))) by its mean µf . This centralization will help
us separating the terms belonging to the periodic fluctuation from those not belonging to it. In



THE MOMENTS OF b-ADDITIVE FUNCTIONS IN CANONICAL NUMBER SYSTEMS 7

particular, we set Lh(z) = f(ah(φ−1(z)))− µf and get

Sd(N) = c(p)M `
∑̀

h1,...,hd=−L

∫
M(p,0,x)

d∏
i=1

(Lhi(z) + µf ) dλd(z) +O
(
`dM `n−1

n

)

= c(p)M `
∑̀

h1,...,hd=−L

∫
M(p,0,x)

d∑
i=0

µd−if τi(Lh1(z), . . . , Lhd(z))dλd(z) +O
(
`dM `n−1

n

)
,

where τi denotes the ith elementary symmetric function.
Now we interchange summation and integration and separate the summand corresponding to

i = 0. This will become our main term, whereas we will transform the rest to get the fluctuating
part. Thus we get

Sd(N) = c(p)M `
∑̀

h1,...,hd=−L

∫
M(p,0,x)

µdfdλd(z)

+ c(p)M `
d∑
i=1

µd−if

∑̀
h1,...,hd=−L

∫
M(p,0,x)

τi (Lh1
(z), . . . , Lhd(z)) dλd(z)

+O
(
`dM `n−1

n

)
= c(p)M `µdf (L+ `+ 1)dλd(M(p, 0, x))

+ c(p)M `
d∑
i=1

µd−if

(
d

i

)
(L+ `+ 1)d−i

∑̀
h1,...,hi=−L

∫
M(p,0,x)

Lh1
(z) · · ·Lhi(z)dλd(z)

+O
(
`dM `n−1

n

)
.

(3.2)

We focus on the integral. Since f is completely additive we note that the integrals over
Lh1

. . . Lhi only depend on the number of factors and how many of the numbers h1, . . . , hd are
pairwise equal. Thus the integrand has the shape Lw1

h1
(z) · · ·Lwjhj (z) for some w1 + · · · + wj = i.

Then the inner sum can be rewritten as

i∑
j=1

∑
w1+···+wj=i

∑̀
h1,...,hj=−L

∫
M(p,0,x)

Lw1

h1
(z) · · ·Lwjhj (z)dλd(z),(3.3)

where the innermost sum runs over all j-tuples of pairwise non-equal numbers h1, . . . , hj .
In the next step we want to replace Lwh by its expectation Q(w). We note that Q(w) does not

depend on h, since f is completely additive, and is zero for w ≡ 1 (mod 2). Then for η = maxhj−1
and all ξ ∈ Fη the integral∫

φ(ξ+X−ηF)

(
Lw1

h1
(z)−Q(w1)

)
· · ·
(
L
wj
hj

(z)−Q(wj)
)

dλd(z) = 0,(3.4)

since the mean of the term with index η + 1 is zero while all other factors are constant. Hence,∫
M(p,0,x)

(
Lw1

h1
(z)−Q(w1)

)
· · ·
(
L
wj
hj

(z)−Q(wj)
)

dλd(z) = O
(
M−

maxr hr
n

)
,(3.5)

since by (3.4) the only part, which contributes to the integral comes from those fundamental
domains intersecting the boundary of M(p, 0, x).
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Now the idea is to split the integral in (3.3) to get representations in terms of the form (3.5).
One of these splitting steps is

∑̀
h1,...,hj=−L

∫
M(p,0,x)

Lw1

h1
(z), . . . , L

wj
hj

(z)dλd(z)

=
∑̀

h1,...,hj=−L

∫
M(p,0,x)

(
Lw1

h1
(z)−Q(w1)

)
Lw2

h2
(z) · · ·Lwjhj (z)dλd(z)

+
∑̀

h1,...,hj=−L

Q(w1)

∫
M(p,0,x)

Lw2

h2
(z) · · ·Lwjhj (z)dλd(z).

Now if we continue this step we get expressions of the form

∑̀
h1,...,hj=−L

Q(w1) · · ·Q(wa)

∫
M(p,0,x)

(
L
wa+1

ha+1
−Q(wa+1)

)
· · ·
(
L
wj
hj
−Q(wj)

)
dλd(z),

where 1 ≤ a < j ≤ i. Since Q(w) is zero for w ≡ 1 (mod 2) it suffices to consider those cases,
where w1, . . . , wa are all even and not less than 2. Furthermore w1 + · · · + wa ≤ i implies that
a ≤ i

2 . Since the summands only depend on ha+1, . . . , hj we substitute it into (3.2) and obtain

(3.6) c̃(p)M `(L+ `+ 1)a+d−iQ(w1) · · ·Q(wa)

×
∑̀

ha+1,...,hj=−L

∫
M(p,0,x)

(
L
wa+1

ha+1
−Q(wa+1)

)
· · ·
(
L
wj
hj
−Q(wj)

)
dλd(z).

The summation over the integral will provide us with the fluctuating function. Since the integral
is bounded by (3.5), we may let ` tend to infinity in order to get a more general periodic function.
Thus replacing the corresponding part in (3.6) by

Ψ(x) =

∞∑
ha+1,...,hj=−L

∫
M(p,0,x)

(
L
wa+1

ha+1
−Q(wa+1)

)
· · ·
(
L
wj
hj
−Q(wj)

)
dλd(z)

causes an error of order O
(
`dM `/n

)
, which disappears in the error term of (3.2).

We recall that N should be related to the volume, ` to the length and x to the interpolation
between ` and `+ 1. Thus we need a map that associates every N a pair ` and x with 0 < x < 1.
Since

1 ≤
r∏
i=1

si+ti∏
k=1

(xik(x))mi ≤
r∏
i=1

si+ti∏
k=1

|βik|mi = |p(0)| = M

we denote y as in [24] by

y =

r∏
i=1

si+ti∏
k=1

(xik(x))mi = M{logM N},

where {x} denotes the fractional part of x ∈ R. Then y = P (x) is a polynomial consisting of
positive and strictly monotone factors. Hence P (x) is positive and strictly monotone in [0, 1] and
thus invertible. By our definition of y we have

P−1(M{logM N}) = x.

We define a new function δ as

δ(x) = M−{x}Ψ(P−1(M{x})),
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which is obviously continuous and periodic with period 1. Since logM N = [logM N ] + {logM N}
and ` = [logM N ] we get

(L+ `+ 1)a+d−i = (logM N − {logM N}+ L+ 1)a+d−i

=

a+d−i∑
j=0

(
a+ d− i

j

)
logjM N(L+ 1− {logM N})a+d−i−j .

(3.7)

Plugging this in (3.6) yields

c(p)Q(w1) · · ·Q(wa)N

a+d−i∑
j=0

(
a+ d− i

j

)
logjM N(L+ 1− {logM N})a+d−i−jδ(logM N)

+O(N
n−1
n logdM N)

= N

a+d−i∑
j=0

logjM Nδj(logM N) +O(N
n−1
n logdM N),

where we set δj(x) = c(p)Q(w1) · · ·Q(wa)
(
a+d−i
j

)
(L+ 1−{x})a+d−i−jδ(x) for j = 0, . . . , a+d− i.

Noting that there are only finitely many summands of this kind we conclude that the contribution
to Sd(p, `, x) coming from the terms in the second line of (3.2) has the form

N

d−1∑
j=0

logjM N Φ̃j(logM N),

where the Φ̃j are finite sums of periodic functions of period 1 and hence periodic functions of
period 1, too. Thus it remains to investigate the term corresponding to i = 0 in (3.2). Applying
(3.7) again we get

c(p)µdfM
`
r∏
i=1

si+ti∏
k=1

(xik(x))mi(L+ `+ 1)d = c(p)µdfN logdM N +N

d−1∑
j=0

logjM NΦj(logM N),

where Φj are periodic functions of period 1. Setting Φj(x) = Φj +Φ̃j for j = 0, . . . , d−1 we derive

S(N) =
∑

z∈S(p,`,x)

(f(z))d

= c(p)µdfN logdM N +

d−1∑
j=0

N logjM NΦj(logM N) +O
(
N

n−1
n logdM N

)
and the theorem is proved.
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