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Abstract. We call a real number normal if for any block of digits the asymptotic frequency of
this block in the N -adic expansion equals the expected one. In the present paper we consider

non-normal numbers and, in particular, essentially and extremely non-normal numbers. We

call a real number essentially non-normal if for each single digit there exists no asymptotic
frequency of its occurrence. Furthermore we call a real number extremely non-normal if all

possible probability vectors are accumulation points of the sequence of frequency vectors. Our
aim now is to extend and generalize these results to Markov partitions.

1. Introduction

Let N ≥ 2 be an integer, called the base, and D := {0, 1, . . . , N − 1}, called the set of digits.
Then for every x ∈ [0, 1) we denote by

x =

∞∑
h=1

dh(x)N−h,

where dh(x) ∈ D for all h ≥ 1, the unique non-terminating N -ary expansion of x. For every
positive integer n and a block of digits b = b1 . . . bk ∈ Dk we write

Π(x,b, n) :=
|{0 ≤ i < n : di+1(x) = b1, . . . , di+k(x) = bk}|

n

for the frequency of the block b among the first n digits of the N -ary expansion of x. Furthermore
let

Πk(x, n) := (Π(x,b, n))b∈Dk

be the vector of frequencies of all blocks b of length k.
Now we call a number k-normal if for every block b ∈ Dk of digits of length k, the limit of the

frequency Π(x,b, n) exists and equals N−k. A number is called normal with respect to base N if
it is k-normal for all k ≥ 1. Furthermore a number is called absolutely normal if it is normal to
any base N ≥ 2.

On the one hand it is a classical result due to Borel [5] that Lebesgue almost all numbers are
absolutely normal. So the set of normal numbers is large from a measure theoretical viewpoint.

On the other hand it suffices for a number to be not normal if the limit of the frequency vector
is not the uniform one. First results concerning the Hausdorff dimension or the Baire category
of non-normal numbers were obtained by Šalát [16] and Volkmann [19]. Stronger variants of
non-normal numbers were of recent interest. In particular, Albeverio et al. [1, 2] considered the
fractal structure of essentially non-normal numbers and their variants. The theory of multifractal
divergence points lead to the investigation of extremely non-normal numbers by Olsen [11, 12]
and Olsen and Winter [14]. The important result for our considerations is that both essentially
and extremely non-normal numbers are large from a topological point of view. The present paper
focuses on this dichotomy of the non-normal numbers: on the one hand they are a set of measure
zero and on the other hand they are residual.

Before we get into the statements and their proofs we want to define essentially and extremely
non-normal numbers. We call a number essentially non-normal if every single digit has no limit
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frequency, i.e. for every b ∈ D we have that

lim
n→∞

Π(x, b, n)

does not exist. Let L be the set of essentially non-normal numbers in base N . Then Albeverio et
al. [1, 2] could prove amongst other results the following
Theorem ( [1, 2, Theorem 1]). The set L is residual, i.e. [0, 1) \ L is of the first category. In
particular, the set L is of the second category.

Another class of non-normal numbers are extremely non-normal numbers. Let Sk be the set of
shift invariant probability vectors, i.e.

Sk :=

(pb)b∈Dk : pb ≥ 0,
∑
b∈Dk

pb = 1,
∑
d∈D

pdb =
∑
d∈D

pbd for all b ∈ Dk−1

 .

Then we call a number x ∈ [0, 1] extremely non-k-normal (with respect to base N) if each shift
invariant probability vector p ∈ Sk occurs as accumulation point of the sequence (Πk(x, n))n.
Furthermore we call a number x ∈ [0, 1] extremely non-normal (with respect to N) if it is extremely
non-k-normal (with respect to N) for every k ≥ 1. We denote by Ek,N and EN the sets of
extremely non-k-normal and extremely non-normal numbers, respectively. Finally let E be the set
of extremely non-normal numbers to all bases N ≥ 2, i.e.

Ek,N = {x ∈ [0, 1) : each p ∈ Sk is an accumulation point of the sequence (Πk(x, n))n} ,

EN =
⋂
k≥1

Ek,N , E =
⋂
N≥2

EN .

Olsen [13] was able to prove that the set E is big in the topological sense.
Theorem ( [13, Theorem 1]). The set E is residual, i.e. [0, 1) \ E is of the first category. In
particular, the set E is of the second category.

This result was generalized to iterated function systems by Baek and Olsen [3]. This result
stays in connection with our Theorem 2.4. However, on the one hand we use a direct approach
for the proof, whereas Baek and Olsen map the iterated function system to the N -ary number
system. On the other hand we also consider Cesàro variants of the extremely normal numbers.
Furthermore number systems with infinite set of digits like the continued fraction expansion and
to Lüroth expansion were considered by Olsen [10] and Šalát [15] respectively. Finally Šalát [17]
considered the Hausdorff dimension of sets with digital restrictions with respect to the Cantor
series expansion.

We now want to introduce the Cesàro variants of extremely non-normal numbers. The main
idea is that if the limit Π(x, b, n) does not exist, the Cesàro limit might. In particular, for i ∈ D
let

Π(1)(x, i, n) = Π(x, i, n),

and for r ≥ 2, let

Π(r)(x, i, n) :=

∑n
j=1 Π(r−1)(x, i, j)

n
be the rth iterated Cesàro average. As above let

Π(r)(x, n) = (Π(r)(x, 0, n), . . . ,Π(r)(x,N − 1, n))

denote the vector of rth iterated Cesàro averages. Then Hyde et al. [8] considered the Cesàro
average of the frequencies and were able to show the following

Theorem ( [8, Theorem 1.1]). For all integers N ≥ 2 and r ≥ 1 the set

{x ∈ [0, 1] : the set of accumulation points of (Π(r)(x, n))∞n=1 equals S1}

is residual.
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2. Definitions and statement of result

The main goal of this paper is to generalize and extend the above mentioned results to Markov
partitions. In our definitions regarding symbolic dynamical systems we mainly follow Chapter 6
of Lind and Marcus [9].

We start with the definition of a dynamical system. Let M be a compact metric space and
φ : M →M be a continuous map. Then we call the pair (M,φ) a dynamical system.

The second ingredient is the definition of a topological partition. Let M be a metric space and
let P = {P0, . . . , PN−1} be a finite collection of disjoint open sets. Then we call P a topological
partition (of M) if M is the union of the closures Pi for i = 0, . . . , N − 1, i.e.

M = P0 ∪ · · · ∪ PN−1.

Suppose now that a dynamical system (M,φ) and a topological partition P = {P0, . . . , PN−1}
of M are given. We want to consider the symbolic dynamical system behind. Therefore let
Σ = {0, . . . , N − 1} be the alphabet corresponding to the topological partition P. Futhermore
define

Σk = {0, . . . , N − 1}k, Σ∗ =
⋃
k≥1

Σk, and ΣN = {0, . . . , N − 1}N

to be the set of words of length k, the set of finite and the set of infinite words over Σ, respectively.
For an infinite word ω = a1a2a3 . . . ∈ ΣN and a positive integer n, let ω|n = a1a2 . . . an denote
the truncation of ω to the n-th place. Finally for ω ∈ Σ∗ we denote by [ω] the cylinder set of all
infinite words starting with the same letters as ω, i.e.

[ω] := {γ ∈ ΣN : γ| |ω| = ω}.
Now we want to describe the shift space that is generated by our Markov partition. Therefore

we call ω = a1a2a3 . . . ∈ ΣN allowed for (P, φ) if
n⋂
k=1

φ−k (Pak) 6= ∅.

Let LP,φ be the set of allowed words. Then LP,φ is a language and there is a unique shift space
XP,φ ⊆ ΣN, whose language is LP,φ. We call XP,φ ⊆ ΣN the one-sided symbolic dynamical system
corresponding to (P, φ). Finally for each ω = a1a2a3 . . . ∈ XP,φ and n ≥ 0 we denote by Dn(ω)
the cylinder set of order n corresponding to ω in M , i.e.,

Dn(ω) :=

n⋂
k=0

φ−k(Pak) ⊆M.

Now we can state the definition of a Markov partition.

Definition 2.1. Let (M,φ) be a dynamical system and P = {P0, . . . , PN−1} be a topological
partition of M . Then we call P a Markov partition if the generated shift space XP,φ is of finite

type and for every ω ∈ XP,φ the intersection
⋂∞
n=0Dn(ω) consists of exactly one point.

After providing all the ingredients necessary for the statement of our result we want to link
the introduced concept of Markov partitions with the N -ary representations of Section 1 and with
matrix number systems (cf. Gröchenig and Haas [7]).

Example 1. Let M = R/Z be the circle and φ : M → M be defined by φ(x) = Nx (mod 1).
We divide M into N subintervals P0, . . . , PN−1 of the form Pi = (i/N, (i + 1)/N) and let Σ =
{0, . . . , N − 1}. Then the underlying system is the N -ary representation. Furthermore it is easy
to verify that the language LP,φ(x) is the set of all words over Σ, so that the one-sided symbolic
dynamical system XP,φ is the full one-sided N -shift ΣN.

Example 2. Let A ∈ Zn×n be an expanding matrix and let D ⊂ Zn be a complete set of residues
modulo AZn. Then there exists a unique compact set M such that

M =
⋃
d∈D

A−1(M + d).
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The sets
Pd := (A−1(K + d))◦

together with φ : Ax mod AZn form a Markov partition of M . It is again easy to verify that the
corresponding language is the set of all words over D, which can be mapped to {0, . . . , N − 1} for
some integer N .

We note that Example 2 also contains the cases of canonical number systems as a special case.
For further information on the different dynamical aspects we refer the interested reader to the
survey of Barat et al. [4] and the references therein.

In order to extend the definition of normal and thus non-normal numbers to M we need the
map πP,φ : XP,φ →M defined by

{πP,φ(ω)} =

∞⋂
n=0

Dn(ω).

By the definition of a Markov partition we have that every ω ∈ XP,φ maps to a unique element
x ∈ M . However, the converse need not be true. In particular, let us consider Example 1 with
N = 10 (the decimal expansion in the unit interval). Then on the one hand every expansion is
mapped to a unique real number. On the other hand the expansions 0.99999 . . . and 1.00000 . . .
correspond to the same element. Similarly we get that 0.39999 . . . = 0.40000. However, one
observes that these ambiguities originate from the intersections Pi ∩ Pj for i 6= j. Thus we
concentrate on the inner points, which somehow correspond to the irrational numbers in the
above case of the decimal expansion. Let

U =

N−1⋃
i=0

Pi,

which is an open and dense (U = M) set. Then for each n ≥ 1 the set

Un =

n−1⋂
k=0

φ−k(U),

is open and dense in M . Thus by the Baire Category Theorem, the set

U∞ =

∞⋂
n=0

Un(2.1)

is dense. Since M \U∞ is the countable union of nowhere dense sets it suffices to show that a set
is residual in U∞ in order to show that it is residual in M . Furthermore for x ∈ U∞ we may call
ω the symbolic expansion of x if πP,φ(ω) = x. Thus in the following we will silently suppose that
x ∈ U∞.

After defining the environment we want to pull over the definitions of normal and non-normal
numbers to the symbolic dynamical system. To this end let b ∈ Σk be a block of letters of length
k and ω = a1a2a3 . . . ∈ XP,φ be the symbolic representation of an element. Then we write

P(ω,b, n) = |{0 ≤ i < n : ai+1 = b1, . . . , ai+k = bk}|
for the frequency of the block b among the first n letters of ω. In the same manner as above let

Pk(ω, n) = (P(ω,b), n)b∈Σk

be the vector of all frequencies of blocks b of length k among the first n letters of ω.
In order to properly define normal numbers we need a probability measure on M . Therefore let

B be the σ-algebra generated by the cylinder sets of M and µ be a probability measure defined
on B. If φ : M → M is measure preserving, i.e. µ(φ−1(A)) = µ(A) for all A ∈ B, then we call
the quadruple (M,φ,B, µ) a measure-theoretic dynamical system. Moreover we call it ergodic if
φ is ergodic, i.e. µ(φ−1A∆A) = 0 implies that either µ(A) = 1 or µ(A) = 0.

A number ω ∈ XP,φ is called k-normal (with respect to (M,φ,B, µ)) if for all blocks b ∈ Σk of
length k we have

lim
n→∞

P(ω,b, n) = µ (Dk(b))
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Furthermore, a number ω ∈ XP,φ is called normal (with respect to (M,φ,B, µ)) if it is k-normal
for every k ≥ 1. An application of Birkhoff’s ergodic theorem yields for µ being ergodic that
almost all numbers ω ∈ XP,φ are normal (cf. Chapter 3.1.2 of [6]).

We note that we equivalently could have defined the measure-theoretic dynamical system with
respect to XP,φ instead of M . However, since the definition of essentially and extremely non-
normal numbers does not depend on this, we will not consider this in the following.

As already mentioned above the aim of the present paper is to show that the non-normal
numbers are a large set in the topological sense. In particular, we want to generalize the theorems
from above by Albeverio et al. [2] and Olsen [13] to this new setting. Thus we call a number
ω ∈ XP,φ essentially non-normal if for all i ∈ Σ the limit

lim
n→∞

P(ω, i, n)

does not exist. By abuse of notation we denote by L the set of essentially non-normal numbers in
M . Then our first result is the following

Theorem 2.1. Let P = {P0, . . . , PN−1} be a one-sided Markov partition for (M,φ). Suppose that
XP,φ is the one-sided full-shift. Then the set of essentially non-normal numbers is residual.

Remark 2.2. The requirement that XP,φ is the full-shift is an artifact of the used construction.
In particular, we suppose that a similar result can be shown for any shift of finite type fulfilling
some mild conditions in order to exclude some trivial cases. For example, we want to exclude the
case of the shift over the alphabet {0, 1} with forbidden words 00 and 11.

A different concept of non-normal numbers are those being arbitrarily close to any given con-
figuration. In particular, we want to generalize the idea of extremely non-normal numbers and
their Cesàro variants to the setting of Markov partitions. Following Olsen’s paper [13] we start
by defining the simplex of all probability vectors ∆k by

∆k =

(pi)i∈Σk : pi ≥ 0,
∑
i∈Σk

pi = 1

 .

Let ‖·‖1 denote the 1-norm then (∆k, ‖·‖1) is a metric space. On the one hand we clearly have
that any vector Pk(ω, n) of frequencies of blocks of digits of length k belongs to ∆k. On the other
hand we want to quantify the non-normality of a number by considering the extend to which
the sequence (Pk(ω, n))n fills up the simplex ∆k. Following the arguments of Volkmann [18] or
Olsen [10, 13] we get that the sequences (Pk(ω, n))n can only fill up an essential part of ∆k for
any ω and k. In particular, let us consider all possible ways a block of length 2, such as 28, can
give rise to one of length 3. Thus we get that∣∣∣∣∣∑

i∈Σ

P(ω, i28, n)−
∑
i∈Σ

P(ω, 28i, n)

∣∣∣∣∣ ≤ 1

n
(2.2)

for all ω. This implies, that for each ω, all but finitely many points in the sequence (P3(ω, n))n
will be very close to the subsimplex

∆3 ∩

{
(pi)i∈Σ3 :

∑
i∈Σ

pi28 =
∑
i∈Σ

p28i

}
.

Thus we get as Olsen [13] that the sequence (Pk(ω, n))n does not fill up a significant part of ∆k.
In particular, the simplex ∆k is not the “correct” object to consider. Rather we need to consider
the subsimplex of shift invariant probability vectors Sk, i.e.

Sk :=

(pi)i∈Σk : pi ≥ 0,
∑
i∈Σk

pi = 1,
∑
i∈Σ

pii =
∑
i∈Σ

pii for all i ∈ Σk−1

 .

Now we define the second ingredient for extremely non-normal numbers, namely the accumu-
lation points of the frequency vectors. In particular, let Ak(ω) be the set of accumulation points



6 M. G. MADRITSCH

of the sequence (Pk(ω, n))n with respect to ‖·‖1, i.e. for ω ∈ XP,φ we set

Ak(ω) := {p ∈ ∆k : p is an accumulation point of (Pk(ω, n))n} .

Our first step is to show, that the sub-simplex Sk is really the right object of investigation.
Therefore we have the following

Theorem 2.3. Let ω ∈ XP,φ. Then

Ak(ω) ⊂ Sk.

Proof. We prove this by showing that for each accumulation point also its shifts must lie in Ak(ω).
Let p = (pi)i∈Σk be an accumulation point of the sequence (Pk(ω, n))n with respect to the 1-norm.
Then there exists an increasing sequence (nm)m of positive integers such that

‖(Pk(ω, nm))m − p‖1 → 0.

Now we use the idea of (2.2) in order to consider all the possible ways a block of length k− 1 can
be extended to one of length k. Thus∣∣∣∣∣∑

i∈Σ

pii −
∑
i∈Σ

pii

∣∣∣∣∣ ≤
∣∣∣∣∣∑
i∈Σ

pii − Pk(ω, ii, nm)

∣∣∣∣∣+

∣∣∣∣∣∑
i∈Σ

Pk(ω, ii, nm)−
∑
i∈Σ

Pk(ω, ii, nm)

∣∣∣∣∣
+

∣∣∣∣∣∑
i∈Σ

Pk(ω, ii, nm)−
∑
i∈Σ

pii

∣∣∣∣∣
≤ ‖(Pk(ω, nm))m − p‖1 +

1

nm
+ ‖(Pk(ω, nm))m − p‖1 → 0,

which implies that
∑
i∈Σ pii =

∑
i∈Σ pii for all i ∈ Σk−1. �

We call an infinite word ω ∈ XP,φ extremely non-k-normal if the set of accumulation points of
the sequence (Pk(ω, n))n (with respect to ‖·‖1) equals Sk, i.e. Ak(ω) = Sk. Furthermore we call
a number extremly non-normal if it is extremely non-k-normal for all k ≥ 1.

As above we also want to extend this notion to the Cesàro averages of the frequencies. To this
end for a fixed block b1 . . . bk ∈ Σk let

P(1)(ω,b, n) = P(ω,b, n).

For r ≥ 2 we recursively define

P(r)(ω,b, n) =

∑n
j=1 P(r−1)(ω,b, j)

n

to be the rth iterated Cesàro average of the frequency of the block of digits b under the first n
digits. Furthermore we define by

P
(r)
k (ω, n) :=

(
P(r)(ω,b, n)

)
b∈Σk

the vector of rth iterated Cesàro averages. As above we are interested in the accumulation

points. Thus similar to above let A
(r)
k (ω) denote the set of accumulation points of the sequence

(P
(r)
k (ω, n))n with respect to ‖·‖1,i.e.

A
(r)
k (ω) :=

{
p ∈ ∆k : p is an accumulation point of (P

(r)
k (ω, n))n

}
.

We will denote the set of extremely non-k-normal numbers of M by E(1)
k . Similarly for r ≥ 1

and k ≥ 1 we denote by E(r)
k the set of rth iterated Cesàro extremely non-k-normal numbers of

M . Furthermore for r ≥ 1 we denote by E(r) the set of rth iterated Cesàro extremely non-normal
numbers and by E the set of completely Cesàro extremely non-normal numbers, i.e.

E(r) =
⋂
k

E(r)
k and E(r) =

⋂
r

E(r) =
⋂
r,k

E(r)
k .

Then our result is the following
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Theorem 2.4. Let k, r and N be positive integers. Furthermore let P = {P0, . . . , PN−1} be a
one-sided Markov partition for (M,φ). Suppose that XP,φ is the one-sided full-shift. Then the set

E(r)
k is residual.

Since the set of non-normal numbers is a countable intersection of sets E(r)
k we get the following

generalization of the result by Hyde et al. [8].

Corollary 2.5. Let N be a positive integer and P = {P0, . . . , PN−1} be a one-sided Markov
partition for (M,φ). Suppose that XP,φ is the one-sided full-shift. Then the sets E(r) and E are
residual.

3. Proof of Theorem 2.1

We borrow the method of Albeverio et al. [2] in order to construct a set of infinite words such
that no limiting frequency of a single digit exits. In particular, this means that this is a subset of
the set of essentially non-normal numbers, which is already residual.

For n ≥ 1 let γn be the word

γn = 00 . . . 0︸ ︷︷ ︸
n

11 . . . 1︸ ︷︷ ︸
n

. . . (N − 1)(N − 1) . . . (N − 1)︸ ︷︷ ︸
n

(3.1)

and Cn be the set

Cn =
⋃
α∈Σn

[αγn].(3.2)

We fix ω ∈ Cn and a digit i ∈ Σ. Then we show that Cn has the desired properties. In particular,
we compare the number of occurrences of i in ω just after the block of is in γn and after the final
block of (N −1)s. Thus for i ∈ {0, . . . , N −2} we set k′n(i) = n(i+ 2) and k′′n(i) = n(N + 1). Then
we get that

P(ω, i, k′n(i)) =
n+ P(ω, i, n)

n(i+ 2)
, P(ω, i, k′′n(i)) =

n+ P(ω, i, n)

n(N + 1)
.

One easily checks that

|P(ω, i, k′n(i))− P(ω, i, k′′n(i))| ≥ 1

(i+ 2)(N + 1)
≥ 1

(N + 1)2
.

For the case of i = N − 1 we set k′n(i) = nN and k′′n(i) = n(N + 1). Then we get that

|P(ω, i, k′n(i))− P(ω, i, k′′n(i))| = nN − P (x, i, n)

N(N + 1)n
≥ 1

(N + 1)2
.

Since ω was arbitrary we get for every i ∈ Σ two sub-sequences of positions k′n(i) and k′′n(i) such
that their respective number of occurrences of the digit i tends to different limits.

In the next step we carry this construction over to the set U∞ defined in (2.1), which is sufficient
for the proof. For n ≥ 1 we set

In =
⋃
α∈Σn

D(N+1)n(αγn).

We note that these sets are the “inner points” of the sets Cn. Any point in In has a corresponding
representation in Cn. Furthermore we set

Fn =

∞⋃
k=n

Ik and L =

∞⋂
n=1

Fn.

In order to show that L is residual in U∞ it suffices to show that every Fn is open and dense.

• Fn is open. Fn is the union of open sets Ik and therefore open.
• Fn is dense. Let x ∈ U∞ and δ > 0. Then we have to show that there exists y ∈
Fn ∩ B(x, δ). Let ω ∈ X be the expansion corresponding to x, i.e. π(ω) = x. Since

diamDk(ω) → 0 and x ∈ Dk(ω) we may choose k ≥ n such that Dk(ω) ⊂ B(x, δ). We
set σ = ω | k and chose y ∈ D(N+1)k(σγk). Then since D(N+1)k(σγk) ⊂ Ik ⊂ Fn and
D(N+1)k(σγk) ⊂ Dk(ω) ⊂ B(x, δ) we have that y ∈ Fn ∩B(x, δ).
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Since L is the countable union of open and dense sets we get that L is residual in U∞.
Finally we note that if x ∈ L, then x ∈ Fn, ∀n ∈ N. Therefore there exists an increasing

sequence of integers {nm} such that x ∈ Inm
for all m ∈ N. Thus for any fixed x ∈ L and every

i ∈ Σ one can choose two sequences k′nm
(i) and k′′nm

(i) such that

|P(ω, i, k′n(i))− P(ω, i, k′′n(i))| ≥ 1

(N + 1)2
,

where ω is the symbolic expansion of x. Hence, L ⊂ L, which proves Theorem 2.1.

4. Proof of Theorem 2.4

Now we draw our attention to the case of extremely non-normal numbers and their Cesàro
variants. Let k ∈ N and q ∈ Sk be fixed throughout the rest of this section. For n ≥ 1 we define
a set Zn which we will use in order to “measure” the distance of the number of occurrences and
q, i.e.

Zn = Zn(q, k) =

ω ∈ ⋃
`≥kn|Σ|k

Σ`| ‖Pk(ω)− q‖1 ≤
1

n

 .

The main idea consists now in the construction of a word having the desired frequencies. In
particular, for a given word ω we want to show that we can add sufficiently many copies of a word
from Zn to get a word whose frequency vector is sufficiently near to q. Therefore we first need,
that Zn is not empty.

Lemma 4.1 ( [10, Lemma 2.4]). For all n ≥ 1, q ∈ Sk and k ∈ N we have Zn(q, k) 6= ∅.

Now we consider how many copies of elements in Zn we have to add in order to get the desired
properties.

Lemma 4.2. Let q ∈ Sk and n, t ∈ N be positive integers. Furthermore let ω = ω1 . . . ωt ∈ Σt be
a word of length t. Then, for any γ ∈ Zn(q, k) and any

` ≥ L := t+ |γ|max

(
n,
t

k

)
(4.1)

we get that

‖Pk(ωγ∗|`)− q‖ ≤ 6

n
.

Proof. We set s := |γ| and

σ = ωγ∗|`.
Furthermore we set q and 0 ≤ r < s such that m = t + qs + r. For a fixed block i an occurrence
can happen in ω, in γ, somewhere in between or at the end. Thus for every i ∈ Σk we clearly have
that

qs

`
P(γ, i) ≤ P(σ, i) ≤ qsP(γ, i)

`
+
t+ q(k − 1) + r

`
.

Now we concentrate on the occurrences in multiples of γ and show that we may neglect those
outside of γ, i.e.,

‖Pk(σ)− q‖ ≤
∥∥∥Pk(σ)− qs

`
Pk(γ)

∥∥∥+
∥∥∥qs
`

Pk(γ)− q
∥∥∥ .

We will estimate both parts separately. For the first one we get that∥∥∥Pk(σ)− qs

`
P(γ, i)

∥∥∥ =
∑
i∈Σk

∣∣∣P(σ, i)− qs

`
P(γ, i)

∣∣∣ ≤ ∑
i∈Σk

t+ qk + s

`

≤ Nk t+ qk

qnkNk
+

1

q
=

t

qnk
+

1

n
+

1

q
.

where we have used that ` ≥ qs ≥ qnkNk.
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For the second part we get that∥∥∥qs
`

Pk(γ)− q
∥∥∥ ≤ ∥∥∥qs

`
Pk(γ)− Pk(γ)

∥∥∥+ ‖Pk(γ)− q‖

≤ qs
∣∣∣∣1` − 1

qs

∣∣∣∣+
1

n

≤ t

`
+

1

n
≤ t

qnkNk
+

1

n
.

Putting these together yields

‖Pk(σ)− q‖ ≤ 2

n
+

t

qnk
+

1

q
+

t

qnkNk
.

By our assumptions on the size of ` in (4.1) this proves the lemma. �

As in the papers of Olsen [10, 13] our main idea is to construct a residual set E ⊂ E(r)
k . But

before we start we want to ease up notation. To this end we recursively define the function
ϕ1(x) = 2x and ϕm(x) = ϕ1(ϕm−1(x)) for m ≥ 2. Furthermore we set D = (QN ∩∆N ). Since D
is countable and dense in ∆N we may concentrate on the probability vectors q ∈ D.

Now we say that a sequence (xn)n in RNk

has property P if for all q ∈ D, m ∈ N, i ∈ N, and
ε > 0, there exists a j ∈ N satisfying:

(1) j ≥ i,
(2) j/2j < ε,
(3) if j < n < ϕm(j) then ‖xn − q‖ < ε.

Then we define our set E to consist of all frequency vectors having property P , i.e.

E = {x ∈ U∞ : (P
(1)
k (x;n))∞n=1 has property P}.

We will proceed in three steps showing that

(1) E is residual,
(2) if (P(r)(x;n))∞n=1 has property P , then also (P(r+1)(x;n))∞n=1 has property P , and

(3) E ⊆ E(r)
k .

Lemma 4.3. The set E is residual.

Proof. For fixed h,m, i ∈ N and q ∈ D, we say that a sequence (xn)n in RNk

has property Ph,m,q,i
if for every ε > 1/h, there exists j ∈ N satisfying:

(1) j ≥ i,
(2) j/2j < ε,
(3) if j < n < ϕm(2j), then ‖xn − q‖ < ε.

Now let Eh,m,q,i be the set of all points whose frequency vector satisfies property Ph,m,q,i, i.e.

Eh,m,q,i :=
{
x ∈ U∞ :

(
P

(1)
k (x;n)

)∞
n=1

has property Ph,m,q,i

}
.

Obviously we have that

E =
⋂
h∈N

⋂
m∈N

⋂
q∈D

⋂
i∈N

Eh,m,q,i.

Thus it remains to show, that Eh,m,q,i is open and dense.

(1) Eh,m,q,i is open. Let x ∈ Eh,m,q,i, then there exists a j ∈ N such that j ≥ i, j/2j < 1/h,
and if j < n < ϕm(2j), then∥∥∥P

(1)
k (x;n)− q

∥∥∥
1
< 1/h.

Let ω ∈ X be such that x = π(ω) and set t := ϕm(2j). Since Dt(ω) is open, there
exists a δ > 0 such that the ball B(x, δ) ⊆ Dt(ω). Furthermore, since all y ∈ Dt(ω) have
their first ϕm(2j) digits the same as x, we get that

B(x, δ) ⊆ Dt(ω) ⊆ Eh,m,q,i.



10 M. G. MADRITSCH

(2) Eh,m,q,i is dense. Let x ∈ U∞ and δ > 0. We must find y ∈ B(x, δ) ∩ Eh,m,q,i.
Let ω ∈ X be such that x = π(ω). Since Dt(ω) → 0 and x ∈ Dt(ω) there exists a t

such that Dt(ω) ⊂ B(x, δ). Let σ = ω|t be the first t digits of x.
Now, an application of Lemma 4.1 yields that there exists a finite word γ such that

‖Pk(γ)− q‖ ≤ 1

6h
.

Let ε ≥ 1
h and L be as in the statement of Lemma 4.2. Then we choose j such that

j

2j
< ε and j ≥ max (L, i) .

An application of Lemma 4.2 then gives us that

‖Pk(σγ∗|j)− q‖ ≤ 6

n
=

1

h
≤ ε.

Thus we choose y ∈ Dj(σγ
∗). Then on the one hand y ∈ Dj(σγ

∗) ⊂ Dt(ω) ⊂ B(x, δ)
and on the other hand y ∈ Dj(σγ

∗) ⊂ Eh,m,q,i
It follows that E is the countable intersection of open and dense sets and therefore E is residual
in U∞. �

Lemma 4.4. Let ω ∈ XP,φ. If (P(r)(ω, n))∞n=1 has property P , then also (P(r+1)(ω, n))∞n=1 has
property P .

This is Lemma 2.2 of [8]. However, the proof is short so we present it here for completeness.

Proof. Let ω ∈ XP,φ be such that (P
(r)
k (ω;n))∞n=1 has property P , and fix ε > 0,q ∈ Sk, i ∈ N

and m ∈ N. Since (P
(r)
k (ω, n))∞n=1 has property P , there exists j′ ∈ N with j′ ≥ i, j′/2j

′
< ε/3,

and such that for j′ < n < ϕm+1(2j
′
) we have that

∥∥∥P
(r)
k (ω, n)− q

∥∥∥ < ε/3.

We set j = 2j
′

and show that (P
(r+1)
k (ω, n))∞n=1 has property P with this j. For all j < n <

ϕm(2j) (i.e. 2j
′
< n < ϕm+1(2j

′
)), we have∥∥∥P

(r+1)
k (ω, n)− q

∥∥∥ =

∥∥∥∥∥P
(r)
k (ω, 1) + P

(r)
k (ω, 2) + · · ·+ P

(r)
k (ω, n)

n
− q

∥∥∥∥∥
=

∥∥∥∥∥P
(r)
k (ω, 1) + P

(r)
k (ω, 2) + · · ·+ P

(r)
k (ω, j′)

n

+
P

(r)
k (ω, j′ + 1) + P

(r)
k (ω, 2) + · · ·+ P

(r)
k (ω, n)− (n− j′)q

n
− j′q

n

∥∥∥∥∥
≤

∥∥∥P
(r)
k (ω, 1) + P

(r)
k (ω, 2) + · · ·+ P

(r)
k (ω, j′)

∥∥∥
n

+

∥∥∥P
(r)
k (ω, j′ + 1)− q

∥∥∥+ · · ·+
∥∥∥P

(r)
k (ω, n)− q

∥∥∥
n

− ‖j
′q‖
n

≤ j′

n
+
ε

3

n− j′

n
+
j′

n
≤ j′

2j′
+
ε

3
+

j′

2j′
≤ ε

3
+
ε

3
+
ε

3
= ε.

�

Lemma 4.5. The set E is a subset of E(r)
k .

Proof. We will show, that for any x ∈ E we also have x ∈ E(r)
k . To this end, let x ∈ E and

ω ∈ XP,φ be the symbolic expansion of x. Since (P
(1)
k (ω, n))n has property P , by Lemma 4.4 we

get that (P
(r)
k (ω, n) has property P .



NON-NORMAL NUMBERS 11

Thus it suffices to show that p is an accumulation point of (P
(r)
k (ω, n))n for any p ∈ Sk.

Therefore we fix h ∈ N and find a q ∈ D such that

‖p− q‖ < 1

h
.

Since (P
(r)
k (ω, n))n has property P for any m ∈ N we find j ∈ N with j ≥ h and such that if

j < n < ϕm(2j) then
∥∥∥P

(r)
k (ω, n)− q

∥∥∥ < 1
h . Hence let nh be any integer with j < nh < ϕm(2j),

then ∥∥∥P
(r)
k (ω, nh)− q

∥∥∥ < 1

h
.

Thus each nh in the sequence (nh)h satisfies∥∥∥p− P
(r)
k (ω, nh)

∥∥∥ ≤ ‖p− q‖+
∥∥∥P

(r)
k (ω, nh)− q

∥∥∥ < 2

h
.

Since nh > h we may extract an increasing sub-sequence (nhu
)u such that P

(r)
k (ω, nhu

) → p for

u→∞. Thus p is an accumulation point of P
(r)
k (ω, n), which proves the lemma. �

Proof of Theorem 2.4. Since by Lemma 4.3 E is residual in U∞ and by Lemma 4.5 E is a subset

of E(r)
k we get that E(r)

k is residual in U∞. Again we note that M \ U∞ is the countable union of

nowhere dense sets and therefore E(r)
k is also residual in M . �
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[18] B. Volkmann, Über Hausdorffsche Dimensionen von Mengen, die durch Zifferneigenschaften charakterisiert
sind. VI, Math. Z. 68 (1958), 439–449.

[19] , On non-normal numbers, Compositio Math. 16 (1964), 186–190 (1964).



12 M. G. MADRITSCH

(M. G. Madritsch) Institute Élie Cartan
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