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Abstract. We consider b-additive functions f where b is an algebraic integer over Z. In partic-

ular, let p be a polynomial, then we show that the asymptotic distribution of f(bp(z)c), where

b·c denotes the integer part with respect to basis b, when z runs through the elements of the ring
Z[b] is the normal law. This is a generalization of results of Bassily and Kátai (for the integer

case) and of Gittenberger and Thuswaldner (for the Gaussian integers).

1. Introduction

The objective of this paper is the consideration of additive functions in number systems. We
start with a simple example of a q-additive function: Let sq denote the sum-of-digits function in
base q, where q is a positive integer. This function has been studied by several authors and we
want to mention Delange [5]. He computed the average of the sum-of-digits function, i.e.,

1
N

∑
n≤N

sq(n) =
q − 1

2
logq(N) + γ1(logq(N)),

where logq denotes the logarithm in base q and γ1 is a continuous function of period 1.
A canonical question is the distribution into residue classes of the sum-of-digits functions, i.e.,

considerations of the majority of sets of the form

Sr,m(N) = {n ≤ N : sq(n) ≡ r mod m} .
In this field Mauduit and Sárközy [25] were able to show the following.

Theorem. Let A,B ⊂ {1, . . . , N} with N ∈ N. Then the estimate∣∣∣∣# {(a, b) ∈ A× B : a+ b ∈ Sr,m(2N)} − |A| |B|
m

∣∣∣∣ = O(Nθ(|A| |B|) 1
2 )

holds, where θ < 1 and the implied O-constant is absolute.

An extension of the results above to general q-additive functions was given by Bassily and
Kátai [3]. Recall that a function f is said to be q-additive if it acts only on the q-adic digits, i.e.,
f(0) = 0 and

f(n) =
∑
k≥0

f(ak(n)qk) for n =
∑
k≥0

ak(n)qk,

where ak(n) ∈ N := {0, . . . , q−1} are the digits of the q-adic expansion. Obviously, sq is a special
q-additive function.

The above mentioned distributional result by Bassily and Kátai [3] reads as follows.

Theorem. Let f be a q-additive function such that f(aqk) = O(1) as k → ∞ and a ∈ N .
Furthermore let

mk,q :=
1
q

∑
a∈N

f(aqk), σ2
k,q :=

1
q

∑
a∈N

f2(aqk)−m2
k,q,
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and

Mq(x) :=
N∑
k=0

mk,q, D2
q(x) =

N∑
k=0

σ2
k,q

with N = [logq x]. Assume that Dq(x)/(log x)1/3 → ∞ as x → ∞ and let p(x) be a polynomial
with integer coefficients, degree d and positive leading term. Then, as x→∞,

1
x

#
{
n < x

∣∣∣∣f(p(n))−Mq(xd)
Dq(xd)

< y

}
→ Φ(y),

where Φ is the normal distribution function.

The aim of this paper is to further generalize these results. Nevertheless we want to mention
also results concerning number systems related to substitution automaton, which were considered
by Dumont and Thomas [9]. For distribution results of additive functions defined over number
systems based on linear recurrences we refer the reader to Drmota and Gajdosik [6]. Relations
between number systems such as canonical number systems and shift radix systems are considered
by Akiyama et al. in [1].

In this paper we focus on generalizations of number systems to rings in algebraic number fields.
Let K be an algebraic number field of degree n and denote by OK its ring of integers. Furthermore
let N and Tr denote the norm and trace of an element of K over Q, respectively.

Before we start with our considerations we need a definition of number systems in integral
domains (cf. [21]).

Definition 1.1. Let R be an integral domain, b ∈ R, and N = {n1, . . . , nm} ⊂ Z. Then we call
the pair (b,N ) a number system in R if every g ∈ R admits a unique and finite representation of
the form

g = a0 + a1b+ · · ·+ ahb
h with ai ∈ N for i = 0, . . . , h(1.1)

and ah 6= 0 if h 6= 0. We call b the base and N the set of digits.
If N = N0 = {0, 1, . . . ,m} for m ≥ 1 then we call the pair (b,N ) a canonical number system.

It has been shown by Kovács [20] that b is a base of a canonical number system in OK if
{1, b, . . . , bn−1} is an integral power base. Possible bases for different algebraic number fields have
been considered in a series of papers [2, 4, 16, 17, 18].

When extending the number system to the complex plane one has to face effects such as
amenability, i.e., there exist two different expansions of one number. In fact, one can construct a
graph which characterizes all the amenable expansions. This has been done by Müller et al. [27]
(with a direct approach) and by Scheicher and Thuswaldner [30] (consideration of the odometer).

Another view on number systems are normal numbers. These are numbers in which expansion
every possible block occurs asymptotically equally often. Constructions of such numbers have
been considered by Dumont et al. [8] and the author in [24, 23]

In this paper we mainly concentrate on additive functions. These are functions that act only on
the digits of an expansion. Thus we define additive functions in these number systems as follows.

Definition 1.2. Let (b,N ) be a number system in a integral domain R. A function f is called
b-additive if f(0) = 0 and for g ∈ R

f(g) =
∑
k≥0

f(ak(g)bk), for g =
∑
k≥0

ak(g)bk (ak(g) ∈ N ).(1.2)

As indicated above the simplest version of an additive function is the sum-of-digits function sb
defined by

sb(g) :=
∑
k≥0

ak(g).

A first step towards generalization is the consideration of b-additive function in the field of Gaussian
rationals. First the result by Delange was extended to that field by Grabner et al. in [13].
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Theorem. Let (b,N ) be a canonical number system in Z[i]. Then we have∑
N(z)≤N
z∈Z[i]

sb(z) =
N(b)− 1

2
πN logN(b)N +Nγ2

(
logN(b)N

)
+O

(√
N logN(b)N

)

where γ2 is a continuous function of period 1.

Also the result by Bassily and Kátai was generalized to number systems in the Gaussian ratio-
nals. Gittenberger and Thuswaldner [12] gained the following distribution result.

Theorem. Let (b,N ) be a canonical number system in Z[i]. Let f be a b-additive function such
that f(cbk) = O(1) as k →∞ and c ∈ N . Furthermore let

mk,b :=
1

N(b)

∑
c∈N

f(cbk), σ2
k,b :=

1
N(b)

∑
c∈N

f2(cbk)−m2
k,b,

and

Mb(x) :=
L∑
k=0

mk,b, D2
b (x) =

L∑
k=0

σ2
k,b

with L = [logN(b) x]. Assume that Db(x)/(log x)1/3 → ∞ as x → ∞ and let p(x) be a polynomial
of degree d with coefficients in Z[i]. Then, as N →∞,

1
# {z ∈ Z[i]|N(z) < N}

#
{

N(z) < N

∣∣∣∣f(p(z))−Mb(Nd)
Db(Nd)

< y

}
→ Φ(y),

where Φ is the normal distribution function and z runs over the Gaussian integers.

This build the base for further considerations of b-additive functions in canonical number sys-
tems in general. First the result of Delange was considered in arbitrary number fields by Thuswald-
ner [32]. Furthermore the moments of the sum-of-digits function in algebraic number fields were
considered by Gittenberger and Thuswaldner [11].

Theorem. Let K be a number field of degree n and OK its ring of integers. Furthermore, let b
be a base of a canonical number system. Then

∑
z∈M(N)

(sb(z))d = cb

(
|N(b)| − 1

2

)d
N logd|N(b)|N +N

d−1∑
j=0

logj|N(b)|Nγj(log|N(b)|N)

+O
(
N

n−1
n logd|N(b)|N

)
,

where M(N) is the set defined below in (2.4), cb is a constant depending on K and b, and the γjs
are continuous functions of period 1.

In the same vain the above mentioned result by Mauduit and Sárközy was generalized to
arbitrary number fields by Thuswaldner [33]. Therefore we write

Ur,m(M(T )) = {z ∈M(T ) : sb(z) ≡ r mod m} ,

where M(T ) is the set described below in (2.4). Then his result reads as follows.

Theorem. Let K be a number field of degree n with ring of integers OK . Let b be the base of a
canonical number system in OK and mb(x) = xn + · · ·+ b1x+ b0 the minimal polynomial of b. If
(mb(1),m) = 1, then∣∣∣∣# {(a, b) ∈ A× B : a+ b ∈ Ur,m(M(2T ))} − |A| |B|

m

∣∣∣∣ = O(|M(T )|θ (|A| |B|) 1
2 )

holds for any two sets A,B ⊂M(T ). Furthermore θ < 1 and the implied O-constant is absolute.
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Despite of these considerations of the sum-of-digits function and other b-additive functions,
we also want to mention Kátai and Liardet [19], who could show a Delange type result for b-
multiplicative functions. Finally there has also been work on the generalization of Waring’s
Problem restricted to sets of the form Ur,m defined above. Here we want to mention Pethő
and Tichy [28] (counting the number of solutions for a S-unit equation) and Thuswaldner and
Tichy [34] (counting the number of solutions of Waring’s Problem with digital restrictions).

Since for a ring of integers to have a power integral basis is a quite strong assumption we want
to consider more general settings in this paper. It was shown by Kovács and Pethő [22] that there
are number systems in rings of the form Z[β] with β an algebraic integer. The main problem we
have to face is the different setting for these number systems. First of all this ring need not to
be the ring of integers, however, this we can circumvent by considering the ring in relation to the
integral closure of Q(β). Secondly the Weyl sums in algebraic number fields are motivated by
consideration of Waring’s Problem. In our case, however, the length of expansion depends on the
absolute value of the conjugates of the base. These may not be equal and therefore we have to
slightly modify the Weyl sums in order to meet our conditions. This will be established in Section
3 where we develop a more general estimation of these sums.

2. Definitions and Results

In the following paragraphs we will define the tools we need in order to properly estimate
the distribution. These definitions deal with algebraic number fields and their relatives and are
standard in the area and the reader may refer to Ribenboim [29] or Wang [35].

Throughout the rest of the paper we fix an algebraic integer β of degree n over Z. Then we set
K = Q(β) to be an algebraic number field and denote by OK its ring of integers (aka its maximal
order). Furthermore we set R = Z[β] to be our ring of consideration. Then let K(`) (1 ≤ ` ≤ r1) be
the real conjugates of K, while K(m) and K(m+r2) (r1 < m ≤ r1 + r2) are the complex conjugates
of K, where r1 + 2r2 = n. Throughout this paper the indices ` and m are always over the sets of
integers cited here. Furthermore we set r = r1 + r2 and call the pair (r1, r2) the signature of K.

If not stated otherwise an upper case letter will always denote a real number, a lower case letter
an element of Z[β] or OK and a Greek letter an element of K, the completion of K. Furthermore
sums are always extended over rational or algebraic integers, respectively.

For γ ∈ K we denote by γ(i) (1 ≤ i ≤ n) the conjugates of γ. In order to extend the
term of conjugation to the completion K of K we define for γj ∈ K and xj ∈ R (1 ≤ j ≤ n)
λ =

∑
1≤j≤n xjγj and λ(i) :=

∑
1≤j≤n xjγ

(i)
j . We recall that for λ ∈ K

N(λ) =
∏

1≤i≤n

λ(i), Tr(λ) =
∑

1≤i≤n

λ(i), |λ |= max
1≤i≤n

∣∣∣λ(i)
∣∣∣(2.1)

are the norm, trace and house of an element of K over Q, respectively. Furthermore for λ ∈ K let

e(x) := exp(2πi x) and E(λ) = e(Tr(λ)).(2.2)

Let δ be the different, ∆ = ∆K|Q the absolute value of the discriminant of K over Q, and D
be the absolute value of the discriminant of R over Z (as Z-module).

We will need some geometry of numbers and therefore let η1, . . . , ηn be a basis of R as Z-module
and ω1, . . . , ωn be an integral basis of OK . Furthermore we let ρ1, . . . , ρn be the corresponding
basis of δ−1 such that

Tr (ρiωj) =

{
1 i = j,

0 i 6= j.

Let Λ be the lattice constructed by the n linear forms

Li =
n∑
j=1

ρ
(i)
j xj .

Then we denote by λ1 the first successive minimum of the convex body B := {z ∈ Rn : |z| ≤ 1}
with respect to the lattice Λ.
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We call a number totally non-negative if λ(i) ≥ 0 for 1 ≤ i ≤ n. As we will successively extend
the maximum length of the expansions we define N(T1, . . . , Tr) to be the set

N(T1, . . . , Tr) :=
{
λ ∈ R :

∣∣∣λ(i)
∣∣∣ ≤ Ti, 1 ≤ i ≤ r} .(2.3)

In the same manner we will need the corresponding set of integers in OK . Thus

M(T1, . . . , Tr) :=
{
λ ∈ OK :

∣∣∣λ(i)
∣∣∣ ≤ Ti, 1 ≤ i ≤ r} .(2.4)

We give a characterization of number systems in R.

Lemma 2.1 ([21, Theorem 3]). Let b ∈ Z[β], N ⊂ Z, and A = maxa∈N |a|. Then (b,N ) is a
number system in Z[β] if and only if

(1)
∣∣b(i)∣∣ > 1 for i = 1, . . . , n and b(i) < −1 for 1, . . . , r1,

(2) N is a full residue system modulo |N(b)| with 0 ∈ N ,
(3) β ∈ Z[b],
(4) all η ∈ Z[β] with ∣∣∣η(i)

∣∣∣ ≤ A∣∣b(i)∣∣− 1
(i = 1, . . . , n),

have a representation in (b,N ).

Since we want to run over the integers in R with respect to an increasing length of expansion
(1.1), we have to consider the relation of length and the absolute value of an element.

Lemma 2.2 ([22, Theorem]). Let `(γ) be the length of the expansion of γ to the base b. Then∣∣∣∣∣`(γ)− max
1≤i≤n

log
∣∣γ(i)

∣∣
log
∣∣b(i)∣∣

∣∣∣∣∣ ≤ C.
Thus we fix a T and set Ti for 1 ≤ i ≤ n such that

log Ti = log T
log
∣∣b(i)∣∣n

log |N(b)|
.(2.5)

In view of Lemma 2.2 we get that the expansions of the elements of N(T) have the same maximum
length. Furthermore we will write for short M(T) := M(T1, . . . , Tr) and N(T) := N(T1, . . . , Tr)
with Ti as in (2.5).

Finally one can extend the definition of a number system also for negative powers of b. Then
for γ ∈ K such that

γ =
h∑

i=−∞
aib

i with ai ∈ N

we call

bγc :=
h∑
i=0

aib
i and {γ} :=

∑
i≥1

aib
−i

the integer part and fractional part of γ,respectively.
Now we are in the position to state our main result.

Theorem 2.3. Let (b,N ) be a number system in R and f be a b-additive function such that
f(abk) = O(1) as k →∞ and a ∈ N . Furthermore let

mk,b :=
1

N(b)

∑
a∈N

f(abk), σ2
k,b :=

1
N(b)

∑
a∈N

f2(abk)−m2
k,b,

and

Mb(x) :=
L∑
k=0

mk,q, D2
b (x) =

L∑
k=0

σ2
k,q
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with L = [logN(b) x]. Assume that there exists an ε > 0 such that Db(x)/(log x)ε →∞ as x→∞
and let p ∈ K[X] be a polynomial of degree d. Then, as T →∞ let Ti be as in (2.5),

1
#N(T)

#
{
z ∈ N(T)

∣∣∣∣f(bp(z)c)−Mb(T d)
Db(T d)

< y

}
→ Φ(y),

where Φ is the normal distribution function.

We will show this theorem essentially in five steps.
(1) We start with the estimation of the Weyl sums which will occur in the proof. First

estimates are provided by generalizations of Waring’s Problem to algebraic number fields
together with Hua’s method of estimating Weyl sums. We will tune these tools in order
to meet our requirements in Section 3. The main difference will be the approximation of
the coefficients.

(2) For counting the number of occurrences of a certain digit in the expansion of the integer
values of the polynomial p we need an Urysohn function. This function is developed in
Section 4 where we consider the fundamental domain of the number system.

(3) The error term when counting the number of occurrences of a digit comes from those
which are near the border of the fundamental domain. Therefore we estimate the number
of elements which are in a small tube around the border in Section 5.

(4) In Section 6 we have to count the number of elements within the fundamental domain
itself, which gives the proof of the central proposition.

(5) Finally we show Theorem 2.3 by truncation and two applications of the Fréchet-Shohat
Theorem.

3. Weyl sums

In this section we want to consider and estimate the exponential sums which will occur in the
following sections. We will begin by giving some background on how exponential sums are defined
in number fields.

Let a boldface letter always denote a vector. Then for T = (T1, . . . , Tr) we set N(T) =
N(T1, . . . , Tr). We call the sum ∑

x∈N(T)

E(g(x)),

where E is as in (2.2) and g is a polynomial, a Weyl sum. In the generalizations of Waring’s
Problem the set N(T) is replaced by the set M(T), but one can in fact replace the set by any
finite set.

The main tool in order to estimate these sums is Weyl’s differentiation method. Therefore we
need a generalization of Dirichlet’s theorem on rational approximation, which is provided by Siegel
(cf. [31]). Since in our case the Ti are not all equal (see Lemma 2.2) we have to slightly modify
Siegel’s original theorem in order to cope with this new situation.

Lemma 3.1. Let N1, . . . , Nr be real numbers and let N = n
√
N1 · · ·Nr1(Nr1+1 · · ·Nr1+r2)2 be their

geometric mean. Suppose that N > ∆
1
n , then, corresponding to any ξ ∈ K, there exist q ∈ OK

and a ∈ δ−1 such that∣∣∣q(i)ξ(i) − a(i)
∣∣∣ < N−1

i , 0 <
∣∣∣q(i)∣∣∣ ≤ Ni, 1 ≤ i ≤ r,

max
(
Ni

∣∣∣q(i)ξ(i) − a(i)
∣∣∣ , ∣∣∣q(i)∣∣∣) ≥ ∆−

1
2 , 1 ≤ i ≤ r,

and

N((q, aδ)) ≤ ∆
1
2 .

Proof. This easily follows from the appropriate modifications in the proof of Theorem 3.1 of [35].
�

Now we can state the main estimate of the exponential sum above.
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Proposition 3.2. Let
T = n

√
T1 · · ·Tr1(Tr1+1 · · ·Tr1+r2)2

be the geometric mean of the Ti (1 ≤ i ≤ r). Suppose that

g(x) = αdx
d + · · ·+ α1x(3.1)

is a polynomial of degree d. If for the leading coefficient αd there exist a ∈ δ−1 and q ∈ OK as in
Lemma 3.1 with Ni = T di (log T )−σ1 and

(log T )σ1 ≤
∣∣∣q(i)∣∣∣ ≤ T di (log T )−σ1 1 ≤ i ≤ r,

then ∑
x∈N(T)

E(g(x))� Tn(log T )−σ0

with σ1 ≥ 2d−1
(
σ0 + r22d

)
.

Since in our considerations the Ti need not all be equal, we need the (log T )−σ0 term, and the
sum is extended over a different set, we have to modify the proof of Theorem 3.2 of Wang [35].
We start with the main tools needed for the proof of Proposition 3.2.

The first tool deals with the different set over which the sum is extended. It also provides a
relation between the number of elements of the sets M(T) and N(T).

Lemma 3.3. Let Ti (1 ≤ i ≤ r) be positive integers and set Tr1+r2+i = Tr1+i for (1 ≤ i ≤ r2).
Then

#M(T) =
2rπr2√

∆
T1 · · ·Tn +O

(
Tn−1

0

)
,

#N(T) =
2rπr2√
D

T1 · · ·Tn +O
(
Tn−1

0

)
,

where T0 = max
(

1, (T1 · · ·Tn)1/n
)

.

Proof. The estimation of #M(T) is Lemma 3.2 of [35] and the second estimate follows easily by
modifications of the lattice in this proof. �

Since in the classical case the Ti are all equal we have to rewrite the corresponding tools in the
proof of Wang’s Lemma 3.6. Therefore we need the following adoption of Lemma 3.5 of Wang [35].

Lemma 3.4. Let Ti and Ni ≥ 0 for 1 ≤ i ≤ s be integers. Then denote by M the set of all points
(t1, . . . , ts) ∈ Zs such that

Ti ≤ ti < Ti +Ni 1 ≤ i ≤ s.
Let M0 be a subset of M and define

S =
∑
t∈M0

min
(
N1

t1
, · · · , Ns

ts

)
.

Then
S � N(#M0)1−

1
s (log(N + 2)),

where N is the geometric mean of the Ni.

Proof. This proof mainly follows that of Lemma 3.5 of Wang [35]. In the same way we start by
setting Mν to be the subset of M0 such that tν

Nν
≥ ti

Ni
for 1 ≤ i ≤ s. Furthermore we denote by

Aν = #Mν its number of elements and by

Sν =
∑

t∈Mν

min
(
N1

t1
, · · · , Ns

ts

)
the restriction of the sum S to elements of Mν .

Then it suffices to show that

Sν � NA
1− 1

s
ν log(Nν + 2),
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which together with S ≤ S1 + · · ·+ Ss proves the lemma.
Without loss of generality we show this for ν = 1. For t > 0 let D(t) be the subset of u ∈ Rs

such that
t ≥ u1 > 0,

u1

N1
≥ ui
Ni
≥ 0, 2 ≤ i ≤ s.

Let M(t) := D(t)∩Zs be the integer points in D(t) and denote by n(t) their number. In the same
manner let M0(t) := {t ∈M0 : t ≥ t1} and denote by n0(t) = #M0(t) its cardinality.

Now let t0 be an integer such that

n(t0) ≤ A1 = n0(N1) < n(t0 + 1).

Then

S1 ≤
∑

t∈M(t0+1)

N1

t1
≤ N1

s∏
i=2

Ni
N1

(t0 + 2)
∑

t1≤t0+1

1
t1
≤ Ns(t0 + 2)s−1

Ns−1
1

log(t0 + 2)

and

A1 ≥ n(t0) ≥
t0∑
t=1

s∏
i=2

Ni
N1

t =
Ns

Ns
1

t0∑
t=1

ts−1 ≥ c(s)N
s

Ns
1

ts0.

Putting these together proves the lemma. �

Now we state our modified version of Lemma 3.6 of Wang [35]. In its original version this
lemma essentially goes back to Mitsui [26].

Lemma 3.5. Let A,Bi (1 ≤ i ≤ r),N be positive numbers satisfying A ≥ 1 and N � 1. Further-
more let B be the geometric mean of the Bi and let Ni (1 ≤ i ≤ r) be in the same ration to N as
the Bi are to B, i.e.,

B := n
√
B1 · · ·Br1(Br1+1 · · ·Br)2 and Ni := N

Bi
B

1 ≤ i ≤ r.

Suppose that 1 ≤ B � N , then, for any ξ ∈ K,∑
m∈M(B)

min
1≤i≤n

(
A, |1− E(ξmηi)|−1

)
� ABn

(
1

|N(q)|
+

1
B

+
N logN
AB

+
logN
A

)
,

where q denotes an integer of K satisfying the conditions in Lemma 3.1 with ξ and Ni.

Proof. Since this is a modification of the proof of Lemma 3.6 in Wang [35] we only sketch the
proof and mainly follow the lines there. We also try to use the same naming.

First we have to mention that ηi is an element of the basis of R (and not of OK as in Wang’s
proof). But this provides us with no difficulty, since this element is fixed throughout the whole
summation.

Let X be the Minkowski embedding, i.e., for ξ ∈ K

X(ξ) = (X1(ξ), . . . , Xn(ξ)) := (ξ(1), . . . , ξ(r1),<(ξ(r1+1)), . . . ,=(ξ(r1+r2))).

Then for each m ∈M(B) we write

Tr(ξmηi) = ei + di (1 ≤ i ≤ n) and set ζ =
n∑
i=1

diρi

with ei being rational integers and − 1
2 ≤ di ≤

1
2 .

One easily checks that

S =
∑

m∈M(B)

min
1≤i≤n

(
A, |1− E(ξmηi)|−1

)
�

∑
m∈M(B)

min
1≤i≤n

(
A, |Xi(ζ)|−1

)
= S∗.

Now we assign to every m ∈M(B) its corresponding ζ and a vector y(m) defined by

y(m) = (R1X1(ζ), . . . , RnXn(ζ)) with Ri = 2∆
1
n

∣∣∣q(i)∣∣∣ .
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We set c11 = nc10∆1/n, where c10 is a constant such that c11 > ∆1/2, and get that

|Xi(ζ)| ≤ 1
2
c11∆−1/n.

Then we divide the set {1, 2, . . . , n} into three parts

J1 :=
{

1 ≤ i ≤ n :
Bi
Ni

∆
1
n ≥ 2c11

∣∣∣q(i)∣∣∣} ,
J2 :=

{
1 ≤ i ≤ n :

1
2
≥ 2c11

∣∣∣q(i)∣∣∣ > Bi
Ni

∆
1
n

}
,

J3 :=
{

1 ≤ i ≤ n : 2c11
∣∣∣q(i)∣∣∣ > 1

2

}
.

Furthermore we set

τi = 2
Bi
Ni

∆
1
n for i ∈ J1, τi = 4c11

∣∣∣q(i)∣∣∣ for i ∈ J2.

For the rest we set τi such that
∏n
i=1 τi = 2−2n. Then we divide the set of possible vectors y(m)

by defining for every vector g ∈ Zn

B(g) :=
{

x : τi

(
gi −

1
2

)
≤ xi < τi

(
gi +

1
2

)
, 1 ≤ i ≤ n

}
.

By the same lines as in the proof of Wang we get that if there are two m and m1 such that
m,m1 ∈ B(g) then m−m1 ∈ a for a certain ideal a with

|N(q)| ≤ ∆
1
nN(a).

Finally we denote by W (g) the number of m ∈M(B) such that y(m) ∈ B(g). Thus following the
lines of the proof of Wang we get that

W (g)� 1 +W0 = 1 +
∏
i∈J1

Ni
∏

j∈J2∪J3

Bj∣∣q(j)∣∣ = 1 +Bn
∏
i∈J1

Ni
Bi

∏
j∈J2∪J3

∣∣∣q(j)∣∣∣−1

.

Now we split the sum S∗ up into two parts where S1 consists of all elements m ∈ M(B) and
y(m) ∈ B(0) and S2 is the rest.

We start with the estimation of S1 and distinguish two cases according to whether J1 ∪ J2 = ∅
or not.

• For J1 ∪ J2 = ∅ we get as in the proof of Wang that

S1 � A+
ABn

|N(q)|
.(3.2)

• For J1 ∪ J2 6= ∅ we rewrite the sum and get

S1 �
∑
m∈a

m∈M(2B)

min
j∈J1∪J2

(
A,

Nj
|Xj(m+ ξ0)|

)
.

We again divide the area of possible X. For t ∈ Zn we define

B∗(t) =
{

x :
N(a)

3
Bi
B

(
ti −

1
2

)
≤ xi <

N(a)
3

Bi
B

(
ti +

1
2

)}
.

We get that B∗(t)∪M(2B) contains at most one element for every t ∈ Zn. By noting our
definition of Ni we rewrite the sum to get

S1 �
∑
t

min
j∈J1∪J2

(
A,

N

|tj |N(a)
1
n

)
� ABn

(
1
B

+
N logN
AB

)
,

where we used Wang’s estimations since the sum is the same.
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Together with the estimation (3.2) we get for S1 that

S1 � ABn
(

1
|N(q)|

+
1
B

+
N logN
AB

)
.(3.3)

Now we are left with estimating S2. Therefore we distinguish the two cases according to whether
W0 > 1 or not.

• For the first case (W0 > 1) we get by following the lines of the proof of Wang that

S2 � Bn logN.(3.4)

• In the case of W0 ≤ 1 we reach the estimate

S2 �
∑

gi∈G0

min
i∈J3

(
Ni∣∣q(i)∣∣

)
,

where G0 is the set of all gi, i ∈ J3 such that

W (g) 6= 0, {gi} 6= 0.

In the same manner as in Wang’s proof we get that the value |gi| in G0 does not exceed
Ni. Thus by an application of Lemma 3.4 we get that

S2 � NBn−1 logN.

Together with the estimation (3.4) this yields

S2 � ABn
(

logN
A

+
N logN
AB

)
.(3.5)

Putting the estimates of S1 and S2 in (3.3) and (3.5) together proves the lemma. �

Now we need two tools in order to successively apply Weyl’s differentiation method. The first
let’s us replace the sum over the elements of N(T) by an estimation of a minimum.

Lemma 3.6 ([35, Lemma 3.8]). Let m ∈ OK and T be the geometric mean of the Ti, i.e.,

T = n
√
T1 · · ·Tr1(Tr1+1 · · ·Tr1+r2)2.

Then ∑
h∈N(T)

E(ξmh)� Tn−1 min
1≤i≤n

(T, |1− E(ξmηi)|−1),

where ηi (1 ≤ i ≤ n) is a basis of R.

Proof. The proof follows the one of Lemma 3.8 of [35] together with an application of Lemma 3.3.
�

The second one deals with the Weyl’s differentiation as such. The main idea is to nest the sum
in order to reduce the degree of the involved polynomial by one.

Lemma 3.7. Suppose that 1 ≤ t ≤ d− 1 and T is the geometric mean of the Ti, then we have∣∣∣∣∣∣
∑

h∈N(T)

E(g(h))

∣∣∣∣∣∣
2t

� T (2t−t−1)n
∑

h1,...,ht∈M(2T )

∣∣∣∣∣∣
∑

h∈N(T)

E(h1 · · ·htg(h, h1, . . . , ht)ξ)

∣∣∣∣∣∣ ,
where

g(h, h1, . . . , ht) = d(d− 1) · · · (d− t+ 1)αdhd−t + · · ·

is a polynomial of degree d− t in h, h1, . . . , ht.
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Proof. By Hölder’s inequality we get that∣∣∣∣∣∣
∑

h∈N(T)

E(g(h))

∣∣∣∣∣∣
2t

≤

 ∑
h1∈N(2T)

∣∣∣∣∣∣
∑

h∈N(T)

E(h1g(h1, h))

∣∣∣∣∣∣
2t−1

≤

 ∑
h1∈M(2T )

∣∣∣∣∣∣
∑

h∈N(T)

E(h1g(h1, h))

∣∣∣∣∣∣
2t−1

� T (2t−1−1)n ∑
h1∈M(2T )

∣∣∣∣∣∣
∑

h∈N(T)

E(h1g(h1, h))

∣∣∣∣∣∣
2t−1

.

Now we iterate this process in the same manner as in the proof of Lemma 3.9 in [35] to finish the
proof. �

Now we consider the divisor function in more detail. This idea essentially goes back to Hua [14].

Lemma 3.8 ([35, Lemma 3.7]). For a ∈ Ok and T ≥ 0 let dk(a, T ) be the number of solutions of
the equation

u1 · · ·uk = a, where u1, . . . , uk ∈M(T ) for i = 1, . . . , k.
Then for every ε > 0

dk(a, T )� |N(a)|ε (log T )(r−1)(k−1).

We write for short d(a, T ) := d2(a, T ). Now we have collected all our tools in order to estimate
sums involving divisor function, which will occur in our proof of Proposition 3.2.

Lemma 3.9. Let t be a non-negative integer and T = (T1, . . . , Tr). Then∑
m∈M(T)

(d(m,T0))t

N(m)
� (n(log T0)r)2

t

,

where T0 = max
(

1,
(
T1 · · ·Tr1T 2

r1+1 · · ·T 2
r

)1/n).

Proof. For simplicity we set Tr1+r2+i = Tr1+i for 1 ≤ i ≤ r2 and continue by induction on t. For
t = 0 we get that m ∈M(T) implies that |N(m)| ≤

∏n
i=1 Ti � Tn0 . Thus by Lemma 3.8∑

m∈M(T)

1
|N(m)|

�
∑
N≤Tn0

(log T0)r−1

N
� n(log T0)r.

Now we assume that the lemma holds for t− 1. Then∑
m∈M(T)

(d(m,T0))t

|N(m)|
=

∑
m∈M(T)

(d(m,T0))t−1

|N(m)|
∑
uv=m

u,v∈M(T0)

1 ≤
∑

u∈M(T0)

∑
uv=m

m∈M(T)

(d(m,T0))t−1

|N(m)|

=
∑

u∈M(T)

∑
v∈M

“
T1|u(1)|−1

,...,Tr|u(r)|−1
”

(d(uv, T0))t−1

|N(u · v)|

� (n · (log T0)r)2
t−1

(n · (log T0)r)2
t−1

= (n · (log T0)r)2
t

.

�

By the last lemma we can estimate a divisor sum which occurs in the estimation of our Weyl
sum.

Lemma 3.10. Let t be a non-negative integer and let T = (T1, . . . , Tr). Furthermore set Tr1+r2+i =
Tr1+i for 1 ≤ i ≤ r2 and suppose that Ti � T0 for 1 ≤ i ≤ n. Then∑

m∈M(T)

(d(m,T0))t � T1 · · ·Tn(n(log T0)r)2
t−1.
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Proof. We show this by induction on t. For t = 0 this essentially is Lemma 3.3. Now we assume
that the lemma holds for t− 1, then by an application of Lemma 3.9∑

m∈M(T)

(d(m,T0))t =
∑

m∈M(T)

(d(m,T0))t−1
∑
uv=m

u,v∈M(T0)

1 =
∑

u∈M(T)

∑
uv=m
u∈M(T)

(d(m,T0))t−1

=
∑

u∈M(T)

∑
v∈M

“
T1|u(1)|−1

,...,Tr|u(r)|−1
” d(uv, T0))t−1

�
∑

u∈M(T)

(d(u, T0))t−1T1 · · ·Tn
|N(u)|

(n(log T0)r)2
t−1−1

� T1 · · ·Tn(n(log T0)r)2
t−1.

�

Finally we need a Lemma whose idea essentially goes back to Hua (c.f. Hilfssatz 6.1 of [14]) in
order to get a better estimation of the Weyl sum.

Lemma 3.11. Let t be a non-negative integer and let T = (T1, . . . , Tr). Suppose that Ti � T0 for
1 ≤ i ≤ n. Then, for any σ2 ≥ 23t−1 we get∑′

m∈M(T)

(d(m,T0))t � Tn0 (n(log T0)r)−σ2

where
∑′

stands for the sum over all m such that

(n(log T0)r)σ2 � (d(m,T0))t.

Proof.

(n(log T0)r)2σ2
∑′

m∈M(T)

(d(m,T0))t �
∑

m∈M(T)

(d(m,T0))3t

� Tn0 (n(log T0)r)2
3t−1 � Tn0 (n(log T0)r)σ2 .

�

Proof of Proposition 3.2. We set G = 2d−1 and get by an application of Lemma 3.7∣∣∣∣∣∣
∑

m∈N(T)

E(g(m))

∣∣∣∣∣∣
G

� T (G−d)n
∑

h1,...,hd−1∈M(2T )

∣∣∣∣∣∣
∑

h∈M(T)

E(αdmh)

∣∣∣∣∣∣ ,
where

m = d!h1 · · ·hd−1.(3.6)

Now we denote by A(m) the number of solutions of (3.6). Noting that dk(m,T ) ≤ d(m,T )k we
get that

A(m)�

{
T (d−2)n if m = 0,
d(m,T )d−1 if m 6= 0.

Putting everything together yields∣∣∣∣∣∣
∑

m∈N(T)

E(g(m))

∣∣∣∣∣∣
G

� T (G−2)n + T (G−d)n
∑

m∈M(d!2qTd−1)

d(m,T )d−1

∣∣∣∣∣∣
∑

h∈M(T)

E(αdmh)

∣∣∣∣∣∣ .
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Now we distinguish two cases for m according to the hypotheses of Lemma 3.11, i.e., whether
(n(log T )r)σ2 � d(m,T ) or not. Thus by an application of Lemma 3.5 and Lemma 3.6∣∣∣∣∣∣
∑

m∈N(T)

E(g(m))

∣∣∣∣∣∣
G

� T (G−2)n + T (G−d)n

(
Tn(n(log T )r)σ +

∑′

m

(n(log T )r)σ
∣∣∣∣∣∑
h

E(αdmh)

∣∣∣∣∣
)

� T (G−2)n + T (G−d+1)n(log T )rσ

+ T (G−d)n(log T )rσ
∑′

m

Tn−1 min
i

(
T, |1− E(αdmh)|−1

)
� T (G−2)n + T (G−d+1)n(log T )rσ + TGn(log T )rσ

(
1

N(αd)
+

1
T

+ (log T )−σ1

)
� T (G−2)n + T (G−d+1)n(log T )rσ + TGn(log T )rσ−σ1 .

�

4. Fundamental domain

In this section we want to construct the Urysohn function for indicating the elements starting
with a certain digit. The following definitions are standard in that area and we mainly follow
Gittenberger and Thuswaldner [12]. We need the fundamental domain, which is defined as the set
of all numbers whose integer part is zero, i.e.,

F ′ :=

z ∈ C

∣∣∣∣∣∣z =
∑
k≥1

akb
−k, ak ∈ N

 .

It is more convenient to consider the embedding of the fundamental domain in Rn. We note that
if (b,N ) is a number system then b is also an algebraic integer of degree n and K = Q(β) = Q(b)
(cf. [16, 21]). Thus we get that {1, b, . . . , bn−1} is an Z-basis for Z[β], a Q-basis of K and an
R-basis of K. We may define the embedding φ by

φ :
{

K → Rn,
α1 + α2b+ · · ·+ αnb

n−1 7→ (α1, . . . , αn).
,

where K is the completion of K.
Now let mb(x) = a0 + a1x+ · · ·+ an−1x

n−1 be the minimal polynomial of b, then we define the
corresponding matrix B by

B =



0 0 · · · · · · · · · −a0

1 0 · · · · · · 0
...

0 1
. . .

...
...

...
. . . . . . . . .

...
...

...
. . . 1 0

...
0 0 · · · 0 1 −an−1


.(4.1)

One easily checks that
φ(b · z) = B · φ(z).

By this we define the embedding of the fundamental domain by

F = φ(F ′) =

z ∈ Rn
∣∣∣∣∣∣z =

∑
k≥1

B−kak, ak ∈ φ(N )

 .

Furthermore we note that by Theorem 1 of [16]

λ((F + g1) ∩ (F + g2)) = 0
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for every g1, g2 ∈ Zn with g1 6= g2, where λ denotes the n dimensional Lebesgue measure. Thus
(B,φ(N )) is a matrix number system and a so called just touching covering system and we are
allowed to apply the results of the paper by Müller et al. [27].

In the rest we combine the ideas of Gittenberger and Thuswaldner [12] with the results of Kátai
and Kőrnyei [16] and Müller et al. [27]. Therefore we only show the results and left the proofs to
the reader. For the proper counting of the elements with the same digit in their expansion the
border of the fundamental domain is of special interest. In particular, its diameter will provide
us with a parameter we need in order to properly estimate the Fourier series of the constructed
Urysohn function. We can approximate F with help of the sets

Q0 :=
{
z ∈ Rn

∣∣‖z‖∞ ≤ 1
2

}
,

Qk :=
⋃
a∈N

B−1(Qk−1 + φ(a)).

This approximation satisfies d(∂Qk, ∂F) � |b|−k, where d(·, ·) denotes the Hausdorff metric. By
consulting [27], we get that the Qk consists of |N |k parallelograms and that there exists a µ with
1 < µ < |N(b)| such that O(µk) of theses parallelograms intersect the boundary of Qk.

Now we define the fundamental domain consisting of all numbers whose first digit equals a ∈ N ,
i.e.,

Fa = B−1(F + φ(a)).

Imitating the proof of Lemma 3.1 of [12] we get the following.

Lemma 4.1. For all a ∈ N and all k ∈ N there exists an axe-parallel tube Pk,a with the following
properties:

• ∂Fa ⊂ Pk,a for all k ∈ N,

• the Lebesgue measure of Pk,a is a O
(

µk

|N(b)|k

)
,

• Pk,a consists of O(µk) axe-parallel rectangles, each of which has Lebesgue measure O(|N(b)|k),

where λ denotes the Lebesgue measure.

As in the proof of Lemma 3.1 of [12] we can construct for each pair (k, a) an axe-parallel polygon
Πk,a and the corresponding tube

Pk,a :=
{
z ∈ Rn

∣∣∣‖z −Πk,a‖∞ ≤ 2cp |b|−k
}
.

Furthermore we denote by Ik,a the set of all points inside Πk,a. Now we define our Urysohn
function ua by

ua(x1, . . . , xn) =
1
κn

∫ κ
2

−κ2
· · ·
∫ κ

2

−κ2
ψa(x1 + y1, . . . , xn + yn) dy1 · · · dyn,(4.2)

where

κ := 2cu |b|−k(4.3)

with cu a constant and

ψa(x1, . . . , xn) =


1 if (x1, . . . , xn) ∈ Ik,a
1
2 if (x1, . . . , xn) ∈ Πk,a

0 otherwise.

Thus ua is the desired Urysohn function which equals 1 for z ∈ Ik,a\Pk,a, 0 for z ∈ Rn\(Ik,a∪Pk,a),
and linear interpolation in between.

We now do a Fourier transform of ua and estimate the coefficients in the same way as in
Lemma 3.2 of [12].
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Lemma 4.2. Let ua(x1, . . . , xn) =
∑

(m1,...,mn)∈Zn cm1,...,mne(m1x1 + · · ·+mnxn) be the Fourier
series of ua. Then the Fourier coefficients cm1,...,mn can be estimated by

c0,...,0 =
1

|N(b)|
, cm1,...,mn � µk

n∏
i=1

1
r(mi)

with

r(mi) =

{
∆mi mi 6= 0,
1 mi = 0.

5. Estimation of the border

Before we proof the central proposition in the next chapter, we have to consider the error
term, which mainly comes from the number of points within the tube Pk,a defined in the previous
chapter. Throughout this section we fix a positive integer k, which we will choose later, and a real
T . Then we set Ti as in (2.5) and define

Fj := #

{
z ∈ N(T)

∣∣∣∣∣φ
(
p(z)
bj+1

)
∈
⋃
a∈N

Pk,a mod B−1Zn
}
.(5.1)

The main target of this section is the estimation of Fj .

Proposition 5.1. Let µ < |N(b)| be as in Section 4 and Cl and Cu be sufficiently large positive
reals. Suppose that j is a positive integer such that

Cl log log T ≤ j ≤ d logN(b) T − Cu log log T.(5.2)

Then for any positive σ3

Fj � µkTn
(
|N(b)|−k + (log T )−σ3

)
.

In order to estimate Fj we apply the Erdős-Turán-Koksma Inequality.

Lemma 5.2 ([7, Theorem 1.21]). Let x1, . . . , xL be points in the n-dimensional real vector space
Rn and H an arbitrary positive integer. then the discrepancy DL(x1, . . . , xL) fulfills the inequality

DL(x1, . . . , xL)� 2
H + 1

+
∑

0<‖h‖∞≤H

1
r(h)

∣∣∣∣∣ 1L
L∑
`=1

e(h · x`)

∣∣∣∣∣ ,
where h ∈ Zn and r(h) =

∏n
i=1 max(1, |hi|).

Now we are ready to prove the proposition.

Proof of Proposition 5.1. In order to apply the Erdős-Turán-Koksma Inequality we have to con-
sider rectangles. Recall that the tube Pk,a consists of rectangles as mentioned in Lemma 4.1. We
split the tube Pk,a into this family of rectangles and let Ra be one of them. Then our goal is to
estimate

Fj(Ra) :=
{
z ∈ N(T)

∣∣∣∣φ( p(z)bj+1

)
∈ Ra mod B−1Zn

}
.

We set xz := φ(p(z)/bj+1) and get by the definition of the discrepancy (cf. [7, Definition 1.5])
that

Fj(Ra)� Tn (λ(Ra) +DL({xz})) ,(5.3)

where L is the number of elements in N(T) and T is the geometric mean of the Ti. Thus we get
by Lemma 3.3 that

L =
2rπr2√
D

Tn +O
(
Tn−1

)
.(5.4)
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In order to estimate the discrepancy we use Lemma 5.2 to get

DL({xz})�
2

H + 1
+

∑
0<‖h‖∞≤H

1
r(h)

∣∣∣∣∣∣ 1L
∑

z∈N(T)

e(h · xz)

∣∣∣∣∣∣ .(5.5)

Our aim is the application of Proposition 3.2. Since E is defined in (2.2) as E = e ◦Tr we have to
rewrite the exponential sum with scalar multiplication into one involving the trace. It is easy to
see that the following function suffices our purpose.

τ(z) := (Tr(z),Tr(bz), . . . ,Tr(bn−1z)) = Ξφ(z),(5.6)

where Ξ = V V T and V is the Vandermonde matrix

V =


1 1 · · · 1
b b(2) · · · (b(n))n−1

...
...

...
bn−1 (b(2))n−1 · · · (b(n))n−1

 .

Thus we get

h · xz = h · φ
(
p(z)
bj+1

)
= hΞ−1τ

(
p(z)
bj+1

)
= Tr

(
n∑
i=1

h̃ib
i−1 p(z)

bj+1

)
,(5.7)

where we have set (h̃1, h̃2, . . . , h̃n) := hΞ−1.
Plugging (5.4), (5.5) and (5.7) into (5.3) and applying Lemma 4.1 yields

Fj(Ra)� λ (Ra)Tn +
Tn

H + 1
+

∑
0<‖h‖∞≤H

1
r(h)

∑
z∈N(T)

E

(
n∑
i=1

h̃ib
i−1 p(z)

bj+1

)
,(5.8)

where

H = (log T )σ4 .(5.9)

Now we want to apply Proposition 3.2 for the last sum. Since
∑n
i=1 h̃ib

i−1p(z) is a polynomial
of degree d we write ξ for its leading coefficient for short. Then we apply Lemma 3.1 to get a ∈ δ−1

and q ∈ OK such that∣∣∣∣ ξ(i)

(b(i))j+1
q(i) − a(i)

∣∣∣∣ ≤ T−di (log T )σ1 and 0 < q(i) ≤ T di (log T )−σ1 for 1 ≤ i ≤ r.

Now we distinguish three cases according to the size of | q | (defined in (2.1)).
• Case 1, | q |≥ (log T )σ1 : By Proposition 3.2 we get∑

z∈N(T)

E

(
n∑
i=1

h̃ib
i−1 p(z)

bj+1

)
� Tn(log T )−σ0 .

• Case 2, 2 ≤ | q | < (log T )σ1 : Let 1 ≤ i ≤ n be such that
∣∣q(i)∣∣ ≥ 2. Then by noting∣∣q(i)∣∣ ≤| q |we get ∣∣∣∣ ξ(i)

(b(i))j+1
q(i) − a(i)

∣∣∣∣ < (log T )σ1

T di
≤ 1∣∣q(i)∣∣

and thus (using our first successive minimum λ1)∣∣∣∣ ξ(i)

(b(i))j+1

∣∣∣∣ ≥ ∣∣∣∣a(i)

q(i)

∣∣∣∣− 1∣∣q(i)∣∣2 ≥ λ1

(
1∣∣q(i)∣∣ − 1∣∣q(i)∣∣2

)
≥ λ1

1
2
∣∣q(i)∣∣ � (log T )−σ1 .(5.10)

Therefore by noting Lemma 2.1 and our definition of H in (5.9) we have∣∣∣b(i)∣∣∣j+1

�
∣∣∣ξ(i)∣∣∣ (log T )σ1 � nH(log T )σ1 � (log T )σ1+σ4 ,



ASYMPTOTIC NORMALITY OF b-ADDITIVE FUNCTIONS 17

which yields

j � (σ1 + σ2)
log
∣∣b(i)∣∣ log log T

contradicting the lower bound for j in (5.2) for sufficiently large Cl.
• Case 3, 0 < | q |< 2: We have to consider two further cases according to whether a 6= 0

or a = 0.
– Case 3.1,

∣∣∣ ξ
bj+1 q

∣∣∣≥ λ1
2 : Let 1 ≤ i ≤ n be such that

∣∣∣ ξ(i)

(b(i))j+1 q
(i)
∣∣∣ ≥ λ1

2 . Then we get
with H as in (5.9) ∣∣∣b(i)∣∣∣j+1

� H = (log T )σ4

which again contradicts the lower bound of j in (5.2).

– Case 3.2,
∣∣∣ ξ
bj+1 q

∣∣∣< λ1
2 : Since λ1 is the first successive minima for the sphere with

respect to the lattice of δ−1 we get that a = 0. Thus for 1 ≤ i ≤ n∣∣∣∣ ξ(i)

(b(i))j+1
q(i)
∣∣∣∣ < (log T )σ1

T di
.

Taking the norm we get

N
(

ξ

bj+1
q

)
=

N(ξ)
N(b)j+1

N(q) <
(log T )nσ1

Tnd
.

This implies

j + 1 ≥ nd log|N(b)| T −
nσ

log |N(b)|
log log T + C

contradicting the upper bound of j in (5.2) for sufficiently large Cu.
Thus we get for all j satisfying (5.2), that∑

z∈N(T)

E

(
n∑
i=1

h̃ib
i−1 f(z)

bj+1

)
� Tn(log T )−σ0 .

Plugging this into (5.8) together with (5.9) yields

Fj(Ra)� Tnλ(Ra) +
Tn

(log T )σ4
+ Tn(log T )−σ0

∑
0<‖h‖∞≤H

1
r(h)

� Tnλ(Ra) +
Tn

(log T )σ4
+ Tn(log T )−σ0(log log T )n.

Finally setting σ4 := σ0/2 and summing over all rectangles Ra yields

Fj � µkTn
(
|N(b)|−k + (log T )−σ0/2

)
.

By setting σ3 = σ0/2 the proposition is proven. �

6. The central proposition

In this section we want to state and proof the central proposition. It will count the number of
elements with given digits in the expansion. This will provide us with the main tool in order to
proof Theorem 2.3.

Proposition 6.1. Let T ≥ 0 and Ti for 1 ≤ i ≤ n be defined as in (2.5). Let L be the maximum
length of the b-adic expansion of z ∈ N(T) and let Cl and Cu be sufficiently large. Then for

Cl logL ≤ l1 < l2 < · · · < lh ≤ dL− Cu logL(6.1)

we have,

Θ := #
{
z ∈ N(T)

∣∣alj (f(z)) = bj , j = 1, . . . , h
}

=
2rπr2

√
D |N(b)|h

Tn +O
(
Tn(log T )−σ0

)
uniformly for T →∞, where bj ∈ N are given and σ0 is an arbitrary positive constant.
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Proof. We recall our Urysohn function ua (defined in (4.2)) and set for ν ∈ Rn

t(ν) = ub1(B−l1−1ν) · · ·ubh(B−lh−1ν),

where B is the matrix defined in (4.1).
Now we want to apply the Fourier transformation, which we developed in Lemma 4.2. Therefore

we set
M := {M = (µ1, . . . , µh)|µj = (mj1, . . . ,mjn) ∈ Zn, for j = 1, . . . , h} .

An application of Lemma 4.2 yields

t(ν) =
∑
M∈M

TMe

 h∑
j=1

µjB
−lj−1ν

 ,

where TM =
∏h
j=1 cmj1,...,mjn . Combining these results we get∣∣∣∣∣∣Θ−

∑
z∈N(T)

t(φ(p(z)))

∣∣∣∣∣∣ ≤ Fl1 + · · ·+ Flh .(6.2)

Using the function τ defined in (5.6) we get

∑
z∈N(T)

t(φ(p(z))) =
∑
M∈M

TM
∑

z∈N(T)

e

 h∑
j=1

µjB
−lj−1Ξ−1τ(p(z))

 .

Setting
µ̃j = (m̃j1, . . . , m̃jn) := µjB

−lj−1Ξ−1 (j = 1, . . . , h)

yields

∑
z∈N(T)

t(φ(p(z))) =
∑
M∈M

TM
∑

z∈N(T)

E

 h∑
j=1

n∑
i=1

m̃jip(z))
blj+1

 .

We want to apply the same ideas as in the proof of Proposition 5.1. For 1 ≤ j ≤ h we set ξj
to be the leading coefficient of

∑n
i=1 m̃jip(z). Then we apply Lemma 3.1 with Ni = T di (log T )−σ1

for 1 ≤ i ≤ r in order to get that there exist a ∈ δ−1 and q ∈ OK such that∣∣∣∣∣∣
h∑
j=1

ξ
(i)
j

(b(i))lj+1
q(i) − a(i)

∣∣∣∣∣∣ < (log T )σ1

T di
and 0 <

∣∣∣q(i)∣∣∣ < T di
(log T )σ1

for 1 ≤ i ≤ n.

Now we again distinguish several cases.

• Case 1, | q |≥ (log T )σ1 : We apply Proposition 3.2 and get

∑
z∈M(T)

E

 h∑
j=1

n∑
i=1

m̃jip(z))
blj+1

� Tn(log T )−σ0 .

• Case 2, 2 ≤| q |< (log T )σ1 : In the same manner as in (5.10) we get

(log T )σ1 ≤

∣∣∣∣∣∣
h∑
j=1

ξ
(i)
j

(b(i))lj+1

∣∣∣∣∣∣ ≤
∑h
j=1

∣∣∣ξ(i)j ∣∣∣∣∣b(i)∣∣l1+1
,

l1 + 1� log log T.

Together with the definition of L this contradicts the lower bound of l1 for sufficiently
large Cl in (6.1).

• Case 3, 0 < | q |< 2: We have to consider two sub cases
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– Case 3.1,
∣∣∣∑h

j=1
ξj

blj+1 q
∣∣∣≥ λ1

2 : Let 1 ≤ i ≤ n be such that

λ1

2
≤

∣∣∣∣∣∣
h∑
j=1

ξ
(i)
j

(b(i))lj+1
q(i)

∣∣∣∣∣∣ ≤
∑h
j=1

∣∣∣ξ(i)j ∣∣∣∣∣b(i)∣∣l1+1

∣∣∣q(i)∣∣∣ ,
then

l1 + 1� log log T
again contradicts the lower bound of l1 for sufficiently large Cl in (6.1).

– Case 3.2,
∣∣∣∑h

j=1
ξj

blj+1 q
∣∣∣< λ1

2 : By Minkowski’s theorem (cf. [15]) we get that a = 0.
Thus for 1 ≤ i ≤ n∣∣∣∣∣∣

h∑
j=1

ξ
(i)
j

(b(i))lj+1
q(i)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
(b(i))lh+1

h∑
j=1

ξ
(i)
j (b(i))lh−ljq(i)

∣∣∣∣∣∣ ≤ (log T )σ1

T di

which implies (taking the norm of the left side)

lh + 1 ≥ nd log|N(b)| T − c(log log|N(b)| T )

contradicting the upper bound for sufficiently large Cu.
After these considerations it is clear, that Case 1 is the only possible case which suffices the

hypotheses in (6.1). Plugging this into (6.2) and applying Lemma 4.2 and Lemma 3.3 for the
coefficient c0,...,0 yields

Θ =
2rπr2

√
D |N(b)|h

Tn +O

Tn(log T )−σ0
∑

0 6=M∈M

TM

+O

 h∑
j=1

Fj

 .

An application of Proposition 5.1 with k � log log T and the observation that∑
M∈M

|TM | � κ−2h � |b|2hk � (log T )σ0/2,

where we used the definition of κ in (4.3), proves the proposition. �

7. Proof of Theorem 2.3

At this point we will need the Fréchet-Shohat Theorem which we state for completeness.

Lemma 7.1 ([10, Lemma 1.43]). Let (Fn(z))n≥1 be a sequence of distribution functions. For each
non-negative integer k let

αk = lim
n→∞

∫ ∞
−∞

zkdFn(z)

exist.
Then there is a subsequence of Fnj (z) (n1 < n2 < · · · ), which converges weakly to a limiting

distribution F (z) for which

αk =
∫ ∞
−∞

zkdF (z) (k = 0, 1, . . .).

Moreover, if the set of moments αk determine F (z) uniquely, then as n → ∞ the distribution
Fn(z) converge weakly to F (z).

For the proof of Theorem 2.3 we mainly follow the proof of Theorem 1.2 of Gittenberger and
Thuswaldner [12]. In the same manner as in their proof we set C := max(Cl, Cu), A := [C logL]
and B := L−A, where L, Cl and Cu are defined in the statement of Proposition 6.1. Furthermore
we define the truncated function f ′ to be

f ′(p(z)) =
B∑
j=A

f(aj(p(z))bj).
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By the definition of A and f(abj)� 1 with a ∈ N we get that f ′(p(z)) = f(p(z)) +O(logL). In
the same manner we define the truncated mean and standard deviation

M ′b(T ) :=
B∑
j=A

mj and D′2b (T ) :=
B∑
j=A

σ2
j .

Since Mb(T ) −M ′b(T ) = O(logL) and D2
b (T ) − D′2b (T ) = O(logL) we get that it suffices to

show that
1

#N(T)
#
{
z ∈ N(T)

∣∣∣∣f ′(p(z))−M ′b(T d)D′b(T d)
< y

}
−→ Φ(y).

By Lemma 7.1 this holds true if and only if the moments

ξk(T ) :=
1

#N(T)

∑
z∈N(T )

(
f ′(p(z))−M ′b(T d)

D′b(T d)

)k
converge to the moments of the normal law for T → ∞. We will show the last statement by
comparing the moments ξk with

ηk(T ) :=
1

#N(Td)

∑
z∈N(Td)

(
f ′(z)−M ′b(T d)

D′b(T d)

)k
,

where Td = (T d1 , . . . , T
d
r ).

An application of Proposition 6.1 gives that

ξk(T )− ηk(T )→ 0 for T →∞.

Furthermore we get by Lemma 2.2 that these sums consist of independently identically dis-
tributed random variables (with possible 2C exceptions). By the central limit theorem we get
that their distribution converges to the normal law. Thus the ηk(T ) converge to the moments of
the normal law. This yields

lim
T→∞

ξk(T ) = lim
T→∞

ηk(T ) =
∫
xkdΦ.

We apply the Fréchet-Shohat Theorem again to prove the theorem.
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