
ON A SECOND CONJECTURE OF STOLARSKY: THE SUM OF DIGITS

OF POLYNOMIAL VALUES

MANFRED G. MADRITSCH AND THOMAS STOLL

Abstract. Let q, r ≥ 2 be integers and denote by sq the sum-of-digits function in base q.
In 1978, K. B. Stolarsky conjectured that

lim
N→∞

1

N

∑
n≤N

s2(nr)

s2(n)
≤ r.

In this paper we prove this conjecture. We show that for polynomials P1(X), P2(X) ∈ Z[X]
of degrees r1, r2 ≥ 1 and integers q1, q2 ≥ 2 we have

lim
N→∞

1

N

∑
n≤N

sq1(P1(n))

sq2(P2(n))
=

r1(q1 − 1) log q2
r2(q2 − 1) log q1

.

We also present a variant of the problem to polynomial values of prime numbers.

1. Introduction and statement of results

Let q ≥ 2 be an integer. Then every positive integer n has a unique q-adic representation
of the form

n =
∑̀
k=0

nkq
k with n` 6= 0.

We call a function f a q-additive function if it acts only on the digits of this expansion, i.e.,

f

(∑̀
k=0

nkq
k

)
=
∑̀
k=0

f(nkq
k).

Moreover, if this action is independent of the position of the digit, i.e., f(aqk) = f(aqj) for
k, j ≥ 0 and a ∈ {0, 1, . . . , q−1}, then we call f strictly q-additive. The most famous example
of a strictly q-additive function is the sum-of-digits function sq defined by

sq

(∑̀
k=0

nkq
k

)
=
∑̀
k=0

nk.

In 1978, K. B. Stolarsky [6] studied the distribution properties of the sequence of fractions

(s2(n
r)/s2(n))n≥1 ,
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where r ≥ 2 denotes a fixed integer. At the end of his paper, he posed two conjectures. His
first conjecture was to give a proof that for all fixed r ≥ 2 one has

lim inf
n→∞

s2(n
r)

s2(n)
= 0.

Hare, Laishram and Stoll [5] recently settled this conjecture and proved, more generally, that
for any polynomial P (X) ∈ Z[X] with P (N) ⊂ N of degree r ≥ 2,

lim inf
n→∞

sq(P (n))

sq(n)
= 0.

Stolarsky also showed that the sequence s2(n
r)/s2(n) is unbounded as n → ∞ (this is also

true for
sq(P (n))
sq(n)

, see [5]) and he posed the question whether

(1.1) lim
N→∞

1

N

∑
n≤N

s2(n
r)

s2(n)

exists and — if it exists — to determine its value. Stolarsky conjectured that the limit (1.1)
exists and that it is included in the interval ]1, h]. The purpose of this paper is to prove this
conjecture. More precisely, as in Hare, Laishram and Stoll [5], we show a general version. We
also present a variant to polynomial values of prime numbers. Let pn denote the n–th prime,
i.e., p1 = 2, p2 = 3, p3 = 5 etc.

Our main result is the following:

Theorem 1.1. Let q1, q2 ≥ 2 be integers and P1(X), P2(X) ∈ Z[X] be polynomials of degrees
r1, r2 ≥ 1, respectively, with P1(N), P2(N) ⊂ N. Then

lim
N→∞

1

N

∑
n≤N

sq1(P1(n))

sq2(P2(n))
=
q1 − 1

q2 − 1
·
(

log q1
log q2

)−1
· r1
r2
.(1.2)

Moreover,

lim
N→∞

1

N

∑
n≤N

sq1(P1(pn))

sq2(P2(pn))
=
q1 − 1

q2 − 1
·
(

log q1
log q2

)−1
· r1
r2
.(1.3)

Remark 1.2. In exactly the same way one can show that

lim
N→∞

1

N

∑
n≤N

sq1(P1(pn))

sq2(P2(n))
=
q1 − 1

q2 − 1
·
(

log q1
log q2

)−1
· r1
r2
.

All these results easily extend to strictly q1- resp. q2-additive functions provided that the
variance and the image set of the functions satisfy some suitable conditions (see [1]). These
conditions are automatically verified by the sum-of-digits function. We also remark that
by using results due to Drmota and Steiner [3] one can prove analogous results for additive
functions of polynomials in numeration systems that are defined via linear recurrent sequences,
such as the Zeckendorf expansion.
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2. Preliminaries

For the proof, we need some notation. We denote by

µq =
q − 1

2
and σ2q =

q2 − 1

12
,

the mean and the variance of the values of the sum-of-digits function (see [1] or [2]). We will
use the letter p to refer to a prime number, and use π(N) for the number of primes up to N .
We write f �ω g or f = Oω(g) if there exists a constant C depending at most on ω such that
f(x) ≤ Cg(x) for sufficiently large x. If there is no such ω then the implied constant is meant
to be absolute. We write logq x for the logarithm to base q. Finally, for A ⊂ N we denote by
d(A) the asymptotic density of A, i.e.,

d(A) = lim
N→∞

A ∩ [1, N ]

N
.

The idea of the proof of Theorem 1.1 is to use Cesàro means (see [4]). However, we cannot
apply these means directly since the summands in (1.2) and (1.3) could be arbitrarily large.
We will therefore divide the sequence into two parts. The first part corresponds to terms
where the ratio stays close to the mean value whereas the second part is made up by terms
that are far away from the mean (this will be made precise in a moment). For the first part,
we use Cesàro means and the following

Lemma 2.1. Let (xn)n∈N be a sequence of reals and A ⊂ N a set with asymptotic density
one. If

lim
n→∞
n∈A

xn = x <∞,

then

lim
N→∞

1

N

∑
n≤N
n∈A

xn = x.

Proof. We define the sequence (yn)n∈N by

yn =

{
xn if n ∈ A,

x if n 6∈ A.

Then we have

lim
N→∞

1

N

∑
n≤N
n∈A

xn = lim
N→∞

1

N

∑
n≤N

yn + lim
N→∞

1

N

∑
n≤N
n6∈A

x = x.

�

For the second part, we make use of a result of Bassily and Kátai [1].

Theorem 2.2. [1, Theorem] Let q ≥ 2 be an integer and P (X) ∈ Z[X] be a polynomial of
degree r ≥ 1 with P (N) ⊂ N. Then

1

N
#

{
1 ≤ n ≤ N :

sq(P (n))− µq logq(N
r)

σq(logqN
r)

1
2

< t

}
−−−−→
N→∞

1√
2π

∫ t

−∞
exp

(
−x

2

2

)
dx
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and

1

π(N)
#

{
1 ≤ p ≤ N :

sq(P (p))− µq logq(N
r)

σq(logqN
r)

1
2

< t

}
−−−−→
N→∞

1√
2π

∫ t

−∞
exp

(
−x

2

2

)
dx.

3. Proof of Theorem 1.1

In the sequel, assume that N ≥ 2 is a fixed real number. For a given integer q ≥ 2 and a
given polynomial P (X) ∈ Z[X] (with P (N) ⊂ N) of degree r ≥ 1 we define Aq,P = Aq,P (N)
to be the set of integers n with 1 ≤ n ≤ N such that sq(P (n)) is close to its mean value, i.e.,

Aq,P :=
{

1 ≤ n ≤ N :
∣∣sq(P (n))− µqr logqN

∣∣ ≤ σq(r logqN)
3
4

}
.

(We remark that in fact any exponent larger than 1
2 in place of 3

4 would have done the
job.) In a similar way, we define Bq,P = Bq,P (N) to be the set of integers n with 1 ≤ n ≤ N
such that sq(P (pn)) is close to its mean value (note that by the prime number theorem we
have pN ∼ N logN , as N →∞), i.e.,

Bq,P :=
{

1 ≤ n ≤ N :
∣∣sq(P (pn))− µqr logq(N logN)

∣∣ ≤ σq(r logq(N logN))
3
4

}
.

In order to be able to apply the properties of the Cesàro mean we need that both the
numerator and the denominator of the ratios in (1.2) and (1.3) are near the mean. We first
show that for N →∞ we have Bq,P ∼ N and Aq,P ∼ N . We then use asymptotic densities to
show that there are only few elements in [1, N ]\(Aq1,P1∩Aq2,P2) resp. [1, N ]\(Bq1,P1∩Bq2,P2).
We will then be able to restrict our attention to Aq1,P1 ∩ Aq2,P2 resp. Bq1,P1 ∩ Bq2,P2 in the
end.

We start with an application of Theorem 2.2. As N →∞, we get that

# ([1, N ] \Aq,P ) = #

{
1 ≤ n ≤ N :

∣∣∣∣∣sq(P (n))− µqr logqN

σq(r logqN)
1
2

∣∣∣∣∣ > (r logqN)
1
4

}

� N

∫ ∞
(r logq N)

1
4

exp

(
−x

2

2

)
dx.

Thus the number of elements that lie not in Aq,P can be estimated by the tail of the normal
distribution. We have∫ ∞

t
exp

(
−x

2

2

)
dx ≤

∫ ∞
t

x

t
exp

(
−x

2

2

)
dx =

exp
(
− t2

2

)
t

,

where we have used that 0 < t ≤ x. Therefore,

# ([1, N ] \Aq,P )� N exp

(
−

(r logqN)
1
2

2

)
(r logqN)−

1
4

� N

(r logqN)
5
4

�q,P
N

(logN)
5
4

.

(3.1)
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The same calculation also shows that

# ([1, N ] \Bq,P ) = #

{
1 ≤ n ≤ N :

∣∣∣∣∣sq(P (pn))− µqr logq(N logN)

σq(r logq(N logN))
1
2

∣∣∣∣∣ > (r logq(N logN))
1
4

}

�q,P
N

(logN)
5
4

.

(3.2)

Recall the setting of Theorem 1.1. The prime number theorem (in the form pN ∼ N logN)
and a comparison of the lengths of the expansions give

max

(
sq1(P1(n))

sq2(P2(n))
,
sq1(P1(pn))

sq2(P2(pn))

)
�q1,P1 logN, N →∞,

uniformly for all n with 1 ≤ n ≤ N . Hence, we get from (3.1) that

1

N

∑
n≤N

n 6∈Aq1,P1
∩Aq2,P2

sq1(P1(n))

sq2(P2(n))
�q1,P1

logN

N

 ∑
n≤N

n6∈Aq1,P1

1 +
∑
n≤N

n6∈Aq2,P2

1


�q1,q2,P1 (logN)(logN)−

5
4 = o(1),

(3.3)

and similarly from (3.2) that

(3.4)
1

N

∑
n≤N

n 6∈Bq1,P1
∩Bq2,P2

sq1(P1(pn))

sq2(P2(pn))
= o(1).

Now we turn to the elements which are in Aq1,P1 ∩ Aq2,P2 . By the definitions of these sets
we get for all n ∈ Aq1,P1 ∩Aq2,P2 (note that the denominator is positive),

sq1(P1(n))

sq2(P2(n))
≤
µq1r1 logq1 N + σq1(r1 logq1 N)

3
4

µq2r2 logq2 N − σq2(r2 logq2 N)
3
4

=

µq1r1
log q1

+ σq1r
3
4
1 (logq1 N)−

1
4 (log q1)

− 3
4

µq2r2
log q2

− σq2r
3
4
2 (logq2 N)−

1
4 (log q2)

− 3
4

,

and

sq1(P1(n))

sq2(P2(n))
≥

µq1r1
log q1

− σq1r
3
4
1 (logq1 N)−

1
4 (log q1)

− 3
4

µq2r2
log q2

+ σq2r
3
4
2 (logq2 N)−

1
4 (log q2)

− 3
4

.

This can be rephrased as follows. Let (Nk)k≥0 be any sequence of reals with limk→∞Nk =∞
and let (nk)k≥0 be any sequence of integers with nk ∈ Aq1,P1(Nk) ∩Aq2,P2(Nk). Then

lim
k→∞

sq1(P1(nk))

sq2(P2(nk))
=
µq1 log q2
µq2 log q1

· r1
r2
.

A similar calculation shows that
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sq1(P1(pn))

sq2(P2(pn))
≤
µq1r1 logq1(N logN) + σq1

(
r1 logq1(N logN)

) 3
4

µq2r2 logq2(N logN)− σq2
(
r2 logq2(N logN)

) 3
4

=

µq1r1
log q1

(
1 + log logN

logN

)
+ σq1r

3
4
1 (log q1)

− 3
4 (logN)−

1
4

(
1 + log logN

logN

) 3
4

µq2r2
log q2

(
1 + log logN

logN

)
− σq2r

3
4
2 (log q2)

− 3
4 (logN)−

1
4

(
1 + log logN

logN

) 3
4

.

In a similar way we get the lower bound with the signs reversed. Again, we obtain as limit

lim
k→∞

sq1(P1(pnk
))

sq2(P2(pnk
))

=
µq1 log q2
µq2 log q1

· r1
r2
.

Now, since Aq,P (N)/N ∼ Bq,P (N)/N ∼ 1 as N →∞, the sets Aq,P =
⋃
N≥1Aq,P (N) and

Bq,P =
⋃
N≥1Bq,P (N) satisfy d(Aq,P ) = d(Bq,P ) = 1, and therefore

d(Aq1,P1 ∩ Aq2,P2) = d(Bq1,P1 ∩ Bq2,P2) = 1.

By Lemma 2.1, the limit for n → ∞ is not altered when we only look at those n that lie in
these subsets of asymptotic density one. Thus we get

(3.5) lim
N→∞

1

N

∑
n≤N

n∈Aq1,P1
∩Aq2,P2

sq1(P1(n))

sq2(P2(n))
=
µq1 log q2
µq2 log q1

· r1
r2
.

A combination of (3.3) and (3.5) yields

lim
N→∞

1

N

∑
n≤N

sq1(P1(n))

sq2(P2(n))

= lim
N→∞

1

N

∑
n≤N

n∈Aq1,P1
∩Aq2,P2

sq1(P1(n))

sq2(P2(n))
+ lim
N→∞

1

N

∑
n≤N

n6∈Aq1,P1
∩Aq2,P2

sq1(P1(n))

sq2(P2(n))

=
µq1 log q2
µq2 log q1

· r1
r2
,

which proves (1.2), and similarly we get (1.3). This completes the proof of Theorem 1.1. �

4. Concluding remarks

The above results do not hold in general for arbitrary q-additive functions. For example,
let f : N→ N be such that f(n) = 1 for n ≥ 0. This function is q-additive (for any q ≥ 2) as
it puts 1 on the least significant digit of n and 0 on all other digits. Then, for each r ≥ 1, we
have that

lim
N→∞

1

N

N∑
n=1

f(nr)

f(n)
= 1.

On the other hand, if f : N → N is q-additive with f(aqk) = 2k for a ∈ {0, . . . , q − 1} and
k ≥ 0 then for each r ≥ 2,

lim
N→∞

1

N

N∑
n=1

f(nr)

f(n)
=∞.
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In order to get other non-trivial values for the limit, the values of f must depend on the
position k as well as on the digit a. We conclude our discussion with the following conjecture.

Conjecture. Let q, r ≥ 2 be integers. Then for each real ` ∈ [1,∞) there exists a q-additive
function f : N→ N such that

lim
N→∞

1

N

N∑
n=1

f(nr)

f(n)
= `.
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